Abstract
Information visualization is gaining importance in data mining and transactional data has long been an important target for data miners. We propose a novel approach for visualizing transactional data using multiple clustering results for knowledge discovery. This scheme necessitates us to relate different clustering results in a comprehensive manner. Thus we have invented a method for attributing colors to clusters of different clustering results based on minimal transversals. The effectiveness of our method VisuMClust has been confirmed with experiments using artificial and real-world data sets.
Keywords
- Association Rule
- Knowledge Discovery
- Cluster Result
- Baseline Method
- Candidate Group
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Afrati, F.N., Gionis, A., Mannila, H.: Approximating a Collection of Frequent Sets. In: Proc. 10th Int. Conf. on Knowledge Discovery and Data Mining (KDD 2004), Seattle, WA, August 2004, pp. 12–19 (2004)
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Database. ACM SIGMOD 22(2), 207–216 (1993)
Berge, C.: Hypergraph. North Holland, Amsterdam (1989)
Berkhin, P.: Survey of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA (2002)
Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-Based Clustering and Visualization of Navigation Patterns on a Web Site. Data Mining and Knowledge Discovery 7(4), 399–424 (2003)
Cadez, I.V., Smyth, P., Mannila, H.: Probabilistic Modeling of Transaction Data with Applications to Profiling, Visualization, and Prediction. In: Proc. 7th Int. Conf. on Knowledge Discovery and Data Mining (KDD 2001), San Francisco, California, USA, August 2001, pp. 37–46 (2001)
Card, S.K., Makinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visualization. Morgan Kaufmann, San Francisco (1999)
Durand, N., Crémilleux, B.: ECCLAT: a New Approach of Clusters Discovery in Categorical Data. In: Proc. 22nd SGAI Int. Conf. on Knowledge Based Systems and Applied Artificial Intelligence (ES 2002), Cambridge, UK, pp. 177–190 (2002)
Eiter, T., Gottlob, G.: Identifying the Minimal Transversals of a Hypergraph and Related Problems. SIAM Journal on Computing Archive 24(6), 1278–1304 (1995)
Estivill-Castro, V.: Why So Many Clustering Algorithms - A Position Paper. ACM SIGKDD Explorations 4(1), 65–75 (2002)
Fayyad, U., Grinstein, G.G., Wierse, A.: Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco (2002)
Gionis, A., Mannila, H., Tsaparas, P.: Clustering Aggregation. In: Proc. 21st Int. Conf. on Data Engineering (ICDE 2005), Tokyo, Japan, April 2005, pp. 341–352 (2005)
Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data Mining, Hypergraph Transversals, and Machine Learning. In: Proc. 16th Symposium on Principles of Database Systems (PODS 1997), Tucson, Arizona, May 1997, pp. 209–216 (1997)
Hébert, C.: Enumerating the Minimal Transversals of a Hypergraph Using Galois Connections. Technical report, Univ. Caen Basse-Normandie, France (2005)
Hipp, J., Güntzer, H., Nakhaeizadeh, G.: Algorithms for Association Rule Mining - A General Survey and Comparison. SIGKDD Explorations 2(1), 58–64 (2000)
Squire, D.M., Squire, D.M.: Visualization of Cluster Changes by Comparing Self-organizing Maps. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 410–419. Springer, Heidelberg (2005)
Pensa, R., Robardet, C., Boulicaut, J.-F.: A Bi-clustering Framework for Categorical Data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 643–650. Springer, Heidelberg (2005)
Suzuki, E., Watanabe, T., Yokoi, H., Takabayashi, K.: Detecting Interesting Exceptions from Medical Test Data with Visual Summarization. In: Proc. 3rd IEEE International Conf. on Data Mining (ICDM 2003), pp. 315–322 (2003)
Tufte, E.: The Visual Display of Quantitative Information. Graphics Press (2001)
Westphal, C., Blaxton, T.: Data Mining Solutions. John Wiley and Sons, New York (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Durand, N., Crémilleux, B., Suzuki, E. (2006). Visualizing Transactional Data with Multiple Clusterings for Knowledge Discovery. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_7
Download citation
DOI: https://doi.org/10.1007/11875604_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45764-0
Online ISBN: 978-3-540-45766-4
eBook Packages: Computer ScienceComputer Science (R0)
