Spectral High Resolution Feature Selection for Retrieval of Combustion Temperature Profiles

  • Esteban García-Cuesta
  • Inés M. Galván
  • Antonio J. de Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)


The use of high spectral resolution measurements to obtain a retrieval of certain physical properties related with the radiative transfer of energy leads a priori to a better accuracy. But this improvement in accuracy is not easy to achieve due to the great amount of data which makes difficult any treatment over it and it’s redundancies. To solve this problem, a pick selection based on principal component analysis has been adopted in order to make the mandatory feature selection over the different channels. In this paper, the capability to retrieve the temperature profile in a combustion environment using neural networks jointly with this spectral high resolution feature selection method is studied.


Feature Selection Radiative Transfer Inverse Model Neural Network Technique High Resolution Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Romero, C., Li, X., Keyran, S., Rossow, R.: Spectrometer-based combustion monitoring for flame stoichiometry and temperature control. Appl. Therm. Eng. 25, 659–676 (2005)CrossRefGoogle Scholar
  2. 2.
    Thakur, M., Vyas, A., Shakher, C.: Measurement of temperature and temperature profile of an axisymmetric gaseous flames using lau phase interferometer with linear gratings. Opt. Laser Eng. 36, 373–380 (2001)CrossRefGoogle Scholar
  3. 3.
    Lu, G., Yan, Y., Colechin, M.: A digital imaging based multifuncional flame monitoring system. IEEE T. Instrum. Meas. 53, 1152–1158 (2004)CrossRefGoogle Scholar
  4. 4.
    Liu, L.H., Jiang, J.: Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames. J. Quant. Spectrosc. Radit. Transfer 70, 207–215 (2001)CrossRefGoogle Scholar
  5. 5.
    McCornick, N.J.: Inverse radiative transfer problems: a review. Nuclear Science and Engineering 112, 185–198 (1992)Google Scholar
  6. 6.
    Eyre, J.R.: Inversion methods for satellite sounding data. Lecture Notes NWP Course. In: European Centre for Medium-Range Weather Forecasts, ECMWF (2004)Google Scholar
  7. 7.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1999)Google Scholar
  8. 8.
    Pearson, K.: On lines and planes of closet fit to systems of points in space. Phil. Mag. 2, 559–572 (1901)Google Scholar
  9. 9.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. Educ. Physhol 24, 417–441, 498–520 (1933)Google Scholar
  10. 10.
    Jollife, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics. Springer, New York (2002)Google Scholar
  11. 11.
    Cybenko, G.: Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems 2, 303–314 (1989)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)CrossRefGoogle Scholar
  13. 13.
    Aires, F., Chédin, A., Scott, N.A., Rossow, W.B.: A regularized neural net approach for retrieval of atmospheric and surface temperatures with the iasi instrument. Journal of Applied Meteorology 41, 144–159 (2001)CrossRefGoogle Scholar
  14. 14.
    Rothman, L.S.: The hitran molecular spectroscopic database: edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transfer (2003)Google Scholar
  15. 15.
    García-Cuesta, E.: CASIMIR: Cálculos Atmosfericos y Simulacion de la Transmitancia en el Infrarrojo. University Carlos III L/PFC 01781, Madrid (2003) (in Spanish)Google Scholar
  16. 16.
    Huang, H.L., Antonelli, P.: Application of principal component analysis to high-resolution infrared measurement compression an retrieval. J. Clim. Appl. Meteorol. 40, 365–388 (2001)CrossRefGoogle Scholar
  17. 17.
    Aires, F.: Remote sensing from the infrared atmospheric sounding interferometer instrument. J. Geophys. Res. 107, ACH6–1–15 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Esteban García-Cuesta
    • 1
  • Inés M. Galván
    • 2
  • Antonio J. de Castro
    • 1
  1. 1.Physics DepartmentCarlos III University -Avenida de la UniversidadLeganés (Madrid)Spain
  2. 2.Computer Science DepartmentCarlos III University -Avenida de la UniversidadLeganés (Madrid)Spain

Personalised recommendations