Discovering Non-taxonomic Relations from the Web

  • David Sánchez
  • Antonio Moreno
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)


The discovery of non-taxonomical relationships is one of the less studied knowledge acquisition tasks, even though it is a crucial point in ontology learning. We present an automatic and unsupervised methodology for extracting non-taxonomically related concepts and labelling relationships, using the whole Web as learning corpus. We also discuss how the obtained relationships may be automatically evaluated, using relatedness measures based on WordNet.


Salt Intake Computational Linguistics Context Vector Linguistic Pattern Label Relationship 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cilibrasi, R., Vitanyi, P.: Automatic meaning discovery using Google (2004), Available at,
  2. Brill, E., Lin, J., Banko, M., Dumais, S.: Data-intensive Question Answering. In: 10th Text Retrieval Conference (2001)Google Scholar
  3. Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching very large ontologies using the WWW. In: Workshop on Ontology Construction (ECAI2000), Berlin, Germany (2000)Google Scholar
  4. Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S., Weld, D., Yates, A.: Unsupervised named-entity extraction form the Web: An experimental study. Artificial Intelligence 165, 91–134 (2005)CrossRefGoogle Scholar
  5. Cimiano, P., Staab, S.: Learning by Googling. SIGKDD 6, 24–33 (2004)CrossRefGoogle Scholar
  6. Kavalec, M., Maedche, A., Skátek, V.: Discovery of Lexical Entries for Non-taxonomic Relations in Ontology Learning. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 249–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. Sánchez, D., Moreno, A.: Automatic Generation of Taxonomies from the WWW. In: 5th International Conference on Practical Aspects of Knowledge Management, 3336th edn., Vienna, Austria, pp. 208–219 (2004)Google Scholar
  8. Pasca, M.: Finding Instance Names and Alternative Glosses on the Web:WordNet Reloaded. In: CICLing 2005, vol. 3406, pp. 280–292. Springer, Heidelberg (2005)Google Scholar
  9. Turney, P.: Mining theWeb for synonyms: PMI-IR versus LSA on TOEFL. In: 12th European Conference on Machine Learning, Germany (2001)Google Scholar
  10. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: 14th International Conference on Computational Linguistics, France, pp. 539–545 (1992)Google Scholar
  11. Miller, G.: Wordnet: A lexical database. Communication of the ACM 38, 39–41 (1995)CrossRefGoogle Scholar
  12. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet: Similarity - Measuring the Relatedness of Concepts. In: 5th Annual Meeting of the North American Chapter of the Association for Computational Linguistics, Boston, USA (2004)Google Scholar
  13. Patwardhan, S.: Incorporating Dictionary and Corpus Information into a Context Vector Measure of Semantic Relatedness, Master of Science Thesis (2003)Google Scholar
  14. Faure, D., Nedellec, C.: Corpus-based conceptual clustering method for verb frames and ontology acquisition. In: LREC 1998 Workshop on Adapting Lexical and Corpus Resources to Sublanguages and Applications, Granada, Spain (1998)Google Scholar
  15. Byrd, R., Ravin, Y.: Identifying and extracting relations from text. In: 4th International Conference on Applications of Natural Language to Information Systems (1999)Google Scholar
  16. Finkelstein-Landau, M., Morin, E.: Extracting Semantic Relationships between Terms: Supervised vs. Unsupervised Methods. In: Workshop on Ontological Engineering on the Global Information Infrastructure (1999)Google Scholar
  17. Maedche, A., Staab, S.: Discovering Conceptual Relations from Text. In: 14th European Conference on Artificial Intelligence, Amsterdam, Netherlands (2000)Google Scholar
  18. Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Transactions on Neural Networks 11, 574–585 (2000)CrossRefGoogle Scholar
  19. Sánchez, D., Moreno, A.: Automatic Discovery of Synonyms and Lexicalizations from the Web. Artificial Intelligence Research and Development 131, 205–212 (2005)Google Scholar
  20. Levin, B.: English Verb Classes and Alternations. Chicago University, Chicago (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Sánchez
    • 1
  • Antonio Moreno
    • 1
  1. 1.Computer Science and Mathematics DepartmentUniversitat Rovira i Virgili (URV)Tarragona, CataloniaSpain

Personalised recommendations