Advertisement

Fast Global k-Means with Similarity Functions Algorithm

  • López-Escobar Saúl
  • J. A. Carrasco-Ochoa
  • Martínez-Trinidad J. Fco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)

Abstract

The global k-means with similarity functions algorithm is an algorithm that allows working with qualitative and quantitative features (mixed data), but it involves a heavy computational cost. Therefore, in this paper, an algorithm that accelerates the global k-means with similarity functions algorithm without significantly affecting the quality of the solution is proposed. Our algorithm called fast global k-means with similarity functions algorithm is tested and compared against the k-means with similarity functions algorithm and the global k-means with similarity functions algorithm.

Keywords

Objective Function Local Search Similarity Function Global Solution Numerical Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Likas, A., Vlassis, N., Verbeek, J.J.: The Global k-Means Clustering Algorithm. Pattern Recognition 36, 451–461 (2003)CrossRefGoogle Scholar
  2. Serrano, J.R.G., Martínez-Trinidad, J.F.: Extension to c-Means Algorithm for the Use of Similarity Functions. In: 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases Proceedings, Prague, Czech Rep, pp. 354–359 (1999)Google Scholar
  3. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases, University of California, Irvine, Departament of Information and Computer Sciences (1998)Google Scholar
  4. Escobar, S.L., Ochoa, J.A.C., Martínez Trinidad, F.: Global k-means with similarity functions. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 392–399. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. Tasoulis, D.K., Vrahatis, M.N.: Unsupervised Clustering on Dynamic Databases. Pattern Recognition Letters 26, 2116–2127 (2005)CrossRefGoogle Scholar
  6. Bradley, P.S., Fayyad, U.M.: Refining Initial Points for k-Means Clustering. In: Proceedings of the 15th International Conference on Machine Learning, San Francisco, CA, pp. 91–98 (1998)Google Scholar
  7. Khan, S.S., Ahmad, A.: Cluster Center Initialization for k-Means Clustering. Pattern Recognition Letters 25, 1293–1302 (2004)CrossRefGoogle Scholar
  8. Peña, J.M., Lozano, J.A., Larrañaga, P.: An Empirical Comparison of Four Initialization Methods for the k-Means Algorithm. Pattern Recognition Letters 20, 1027–1040 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • López-Escobar Saúl
    • 1
  • J. A. Carrasco-Ochoa
    • 1
  • Martínez-Trinidad J. Fco
    • 1
  1. 1.National Institute for Astrophysics, Optics and ElectronicsTonantzintla, PueblaMéxico

Personalised recommendations