Speeding Up Shape Classification by Means of a Cyclic Dynamic Time Warping Lower Bound

  • Vicente Palazón
  • Andrés Marzal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)


Cyclic Dynamic Time Warping (CDTW) is a good measure of contour shapes dissimilarity, but it is computationally expensive. We introduce a lower bound for CDTW inspired in the Bunke and Bühler that leads to a significant speed up of contours classification in real tasks, as the experiments show.


Optimal Path Near Neighbour Dynamic Time Warping Dissimilarity Measure Optimal Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartolini, I., Ciaccia, P., Patella, M.: WARP: Accurate Retrieval of Shapes Using Phase of Fourier Descriptors and Time Warping Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1), 142–147 (2005)CrossRefGoogle Scholar
  2. Serge, B., Jitendra, M., Jan, P., Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  3. Bünke, H., Bühler, H.: Applications of approximate string matching to 2D shape recognition. Pattern Recognition 26(12), 1797–1812 (1993)CrossRefGoogle Scholar
  4. Keogh, E.J.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417 (2002)Google Scholar
  5. Latecki, J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 424–429 (2000)Google Scholar
  6. Maes, M.: Polygonal Shape Recognition using String Matching Techniques. Pattern Recognition 24(5), 433–440 (1991)CrossRefGoogle Scholar
  7. Maes, M.: On a Cyclic String-to-String Correction Problem. Information Processing Letters 35, 73–78 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. Marzal, A., Palazón, V.: Dynamic time warping of cyclic strings for shape matching. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 644–652. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. Mokhtarian, F., Kittler, J., Abbasi, S.: Shape queries using image databases, http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
  10. Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based Indexing of Image Databases. In: CBAIVL 1998, pp. 56–62 (1998)Google Scholar
  11. Sikora, T.: The mpeg-7 visual standard for content description – an overview. IEEE Transactions on Circuits and Systems for Video Technology 11(6), 696–702 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vicente Palazón
    • 1
  • Andrés Marzal
    • 1
  1. 1.Dept. Llenguatges i Sistemes InformàticsUniversitat Jaume I de CastellóSpain

Personalised recommendations