Advertisement

Abstract

The intuitionistic fuzzy set, developed by Atanassov [1], is a useful tool to deal with vagueness and uncertainty.Correlation analysis of intuitionistic fuzzy sets is an important research topic in the intuitionistic fuzzy set theory and has great practical potential in a variety of areas, such as engineering, decision making, medical diagnosis, pattern recognition, etc. In this paper, we propose a new method for deriving the correlation coefficients of intuitionistic fuzzy sets, which has some advantages over the existing methods. Furthermore, we extend the developed method to the interval-valued intuitionistic fuzzy set theory, and show its application in medical diagnosis.

Keywords

Membership Degree Important Research Topic General Probability Space IVIFS Theory Intuitionistic Fuzzy Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MATHCrossRefMathSciNetGoogle Scholar
  2. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  3. Deschrijver, G., Kerre, E.E.: On the composition of intuitionistic fuzzy relations. Fuzzy Sets and Systems 136, 333–361 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. Deschrijver, G., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Transactions on Fuzzy Systems 12, 45–61 (2004)CrossRefGoogle Scholar
  5. Atanassov, K., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31, 343–349 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. Chen, S.M., Tan, J.M.: Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 67, 163–172 (1994)MATHCrossRefMathSciNetGoogle Scholar
  7. Hong, D.H., Choi, C.H.: Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 114, 103–113 (2000)MATHCrossRefGoogle Scholar
  8. Atanassov, K., Georgiev, C.: Intuitionistic fuzzy prolog. Fuzzy Sets and Systems 53, 121–128 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems 117, 209–213 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. Szmidt, E., Kacprzyk, J.: A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 388–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. Liang, Z.Z., Shi, P.F.: Similarity measures on intuitionistic fuzzy sets. Pattern Recognition letters 24, 2687–2693 (2003)MATHCrossRefGoogle Scholar
  12. Gerstenkorn, T., Manko, J.: Correlation of intuitionistic fuzzy sets. Fuzzy Sets and Systems 44, 39–43 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. Hong, D.H., Hwang, S.Y.: Correlation of intuitionistic fuzzy sets in probability spaces. Fuzzy Sets and Systems 75, 77–81 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. Hung, W.L.: Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets. International Journal of Uncertainty Fuzziness Knowledge-Based Systems 9, 509–516 (2001)MATHMathSciNetGoogle Scholar
  15. Mitchell, H.B.: A correlation coefficient for intuitionistic fuzzy sets. International Journal of Intelligent Systems 19, 483–490 (2004)MATHCrossRefGoogle Scholar
  16. Hung, W.L., Wu, J.W.: Correlation of intuitionistic fuzzy sets by centroid method. Information Sciences 144, 219–225 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. Bustince, H., Burillo, P.: Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 74, 237–244 (1995)MATHCrossRefMathSciNetGoogle Scholar
  18. Hong, D.H.: A note on correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 95, 113–117 (1998)MATHCrossRefMathSciNetGoogle Scholar
  19. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zeshui Xu
    • 1
  1. 1.Department of Management Science and Engineering, School of Economics and ManagementTsinghua UniversityBeijingChina

Personalised recommendations