PSO and ACO in Optimization Problems

  • Lenka Lhotská
  • Martin Macaš
  • Miroslav Burša
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)


Biological processes and methods have been influencing science and technology for many decades. The ideas of feedback and control processes Norbert Wiener used in his cybernetics were based on observation of these phenomena in biological systems. Artificial intelligence and intelligent systems have been fundamentally interested in the phenomenology of living systems, namely perception, decision-making, action, and learning. Natural systems exhibit many properties that form fundamentals for a number of nature inspired applications – dynamics, flexibility, robustness, self-organisation, simplicity of basic elements, and decentralization. This paper reviews examples of nature inspired software applications focused on optimization problems, mostly drawing inspiration from collective behaviour of social colonies.


Particle Swarm Optimization IEEE Computer Society Travelling Salesman Problem Travel Salesman Problem Swarm Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Begon, M., Harper, J.L., Townsend, C.R.: Ecology: individuals, populations and communities. Blackwell Scientific, Oxford (1990)Google Scholar
  2. 2.
    Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.): GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kauffman, San Francisco (1999)Google Scholar
  3. 3.
    Huberman, B. (ed.): The Ecology of Computation. North-Holland, Amsterdam (1988)MATHGoogle Scholar
  4. 4.
    Tateson, R.: Self-organising pattern formation: fruit flies and cell phones. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel problem solving from nature — PPSN V, pp. 732–741. Springer, Berlin (1998)CrossRefGoogle Scholar
  5. 5.
    Conrad, M.: Molecular computing. Advances in Computers 30, 235–324 (1990)CrossRefGoogle Scholar
  6. 6.
    Proctor, G., Winter, C.: Information flocking: data visualisation in virtual worlds using emergent behaviours. In: Proceedings of Virtual Worlds (1998)Google Scholar
  7. 7.
    Smith, T., Philippides, A.: Nitric oxide signalling in real and artificial neural networks. BT Technol J 18(4), 140–149 (2000)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Ji, C., Yuan, P., Li, M., Wang, C., Wang, G.: Particle swarm optimization for base station placement in mobile communication. In: Proceedings of 2004 IEEE International Conference on Networking, Sensing and Control 2004, pp. 428–432 (2004)Google Scholar
  9. 9.
    Ji, C., Zhang, Y., Gao, S., Yuan, P., Li, Z.: Particle swarm optimization for mobile ad hoc networks clustering. In: Proceedings of IEEE International Conference on Networking, Sensing and Control 2004, p. 375 (2004)Google Scholar
  10. 10.
    Van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC2003), pp. 215–220 (2003)Google Scholar
  11. 11.
    Sousa, T., Silva, A., Neves, A.: A particle swarm data miner. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 43–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Fourie, P.C., Groenwold, A.A.: Particle swarms in topology optimization. In: Extended Abstracts of the Fourth World Congress of Structural and Multidisciplinary Optimization, pp. 52–53 (2001)Google Scholar
  13. 13.
    Floreano, D.: Evolutionary mobile robotics. In: Quagliarelli, D., Periaux, J., Poloni, C., Winter, G. (eds.) Genetic Algorithms in Engineering and Computer Science. John Wiley, Chichester (1997)Google Scholar
  14. 14.
    Oliveira, P.M., Cunha, J.B., Coelho, J.o.P.: Design of PID controllers using the particle swarm algorithm. In: Twenty-First IASTED International Conference: Modelling, Identification, and Control, MIC 2002 (2002)Google Scholar
  15. 15.
    Conradie, A., Miikkulainen, R., Aldrich, C.: Adaptive control utilizing neural swarming. In: Proceedings of the Genetic and Evolutionary Computation Conference 2002 (GECCO 2002) (2002)Google Scholar
  16. 16.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)MATHGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Dorigo, M.: Optimization, learning and natural algorithms, PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)Google Scholar
  20. 20.
    Blum, C.: Beam-ACO – Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)CrossRefGoogle Scholar
  21. 21.
    Stützle, T., Hoos, H.H.: MAX-MIN Ant system. Future Gen. Comput. Syst. 16(8), 889–914 (2000)CrossRefGoogle Scholar
  22. 22.
    Gambardella, L.M., Dorigo, M.: Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS J. Comput. 12(3), 237–255 (2000)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  24. 24.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)Google Scholar
  25. 25.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  26. 26.
    Parker, L.E.: Current State of the Art in Distributed Autonomous Mobile Robotics. In: Parker, L.E., Bekey, G.A., Barhen, J. (eds.) Proceedings of the 5th International Symposium on Distributed Autonomous Robotic Systems, pp. 3–12. Springer, Berlin (2000)Google Scholar
  27. 27.
    Dasgupta, D., Balachandran, S.: Artificial Immune Systems: A Bibliography, Computer Science Devision, University of Memphis, Technical Report No. CS-04-003 (June 2005)Google Scholar
  28. 28.
    Dasgupta, D.: An Overview of Artificial Immune Systems and Their Applications. In: Artificial Immune Systems and Their Applications, pp. 3–23. Springer, Heidelberg (1999)Google Scholar
  29. 29.
    Ji, Z., Dasgupta, D.: Artificial Immune System (AIS) Research in the Last Five Years. In: Published in the proceedings of the Congress on Evolutionary Computation Conference (CEC) Canberra, Australia, December 8-12 (2003)Google Scholar
  30. 30.
    Branco, C.P.J., Dente, J.A., Mendes, R.V.: Using Immunology Principles for Fault Detection. IEEE Transactions on Industrial Electronics 50(2) (April 2003)Google Scholar
  31. 31.
    Cui, X., Hardin, C.T., Ragade, R.K., Elmaghraby, A.S.: A Swarm Approach for Emission Sources Localization. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar
  32. 32.
    Prins, C.: Competitive genetic algorithms for the open-shop scheduling problem. Mathematical Methods of Operations Research 52(3), 389–411 (2000)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Liu, Z., Kwiatkowska, M.Z., Constantinou, C.: A Biologically Inspired QoS Routing Algorithm for Mobile Ad Hoc Networks. In: Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA 2005). IEEE, Los Alamitos (2005)Google Scholar
  34. 34.
    Akon, M.M., Goswani, D., Jyoti, S.A.: A New Routing Table Update and Ant Migration Scheme for Ant Based Control in Telecommunication Networks. In: Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar
  35. 35.
    Zhao, Y., Zheng, J.: Particle Swarm Optimization Algorithm in Signal Detection and Blind Extraction. In: Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar
  36. 36.
    Venayagamoorthy, G.K., Gudise, V.G.: Swarm Intelligence for Digital Circuits Implementation on Field Programmable Gate Arrays Platforms. In: Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar
  37. 37.
    Pang, W., Wang, K., Zhou, C., Dong, L.: Fuzzy Discrete Particle Swarm Optimization for Solving Traveling Salesman Problem. In: Proceedings of the 4th International Conference on Computer and Information Technology (CIT 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar
  38. 38.
    Folino, G., Forestiero, A., Spezzano, G.: Swarming Agents for Discovering Clusters in Spatial Data. In: Proceedings of the 2nd International Symposium on Parallel and Distributed Computing (ISPDC 2003). IEEE Computer Society, Los Alamitos (2003)Google Scholar
  39. 39.
    Chen, L., Xu, X., Chen, Y., He, P.: A Novel Ant Clustering Algorithm Based on Cellular Automata. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar
  40. 40.
    Zhang, Y., Huang, S.: A Novel Multiobjective Particle Swarm Optimization for Buoys-Arrangement Design. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lenka Lhotská
    • 1
  • Martin Macaš
    • 1
  • Miroslav Burša
    • 1
  1. 1.Gerstner LaboratoryCzech Technical University in PraguePragueCzech Republic

Personalised recommendations