Advertisement

Uncentered (Absolute) Correlation Clustering Method Fit for Establishing Theoretical SAPK/JNK Signaling Pathway in Human Soft Tissue Sarcoma Samples

  • Jinling Zhang
  • Yinghua Lu
  • Lin Wang
  • Hongxin Zhang
  • Bo Zhang
  • Yeqiu Wang
  • Kai Wu
  • Stefan Wolfl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)

Abstract

The aim of this research is to use and compare clustering technologies and find the best method for establishing theoretical SAPK/JNK signaling pathway in human soft tissue sarcoma samples. Centroid linkage, Single linkage, complete linkage and average linkage hierarchical clustering are used to arrange genes for setup signaling pathways according to similarity in pattern of gene. The results show that centriod linkage, complete linkage, and average linking clustering architecture is consistent with the core unit of the cascade composed of a CDC42, a MEKK1 (map3k1), a MKK4 (map2k4), a JNK1(mapk8) to a ATF2 in hierarchical clustering. An activated Jnk phosphorylates a variety of transcription factors regulating gene expression, such as ATF2. This study implies that centroid linkage, complete linkage and average linkage clustering method in uncentered (absolute) correlation similarity measures fits for establishing theoretical SAPK/Jnk signaling pathway in human soft tissue sarcoma samples which is consistent with biological experimental SAPK/Jnk signaling pathway

Keywords

Single Linkage Complete Linkage Absolute Correlation Correlation Cluster Single Linkage Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster Analysis and Display of Genome-wide Expression Patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)CrossRefGoogle Scholar
  2. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)MATHGoogle Scholar
  3. Yeung, K.Y., Ruzzo, W.L.: Principal Component Analysis for Clustering Gene Expression Data. Bioinformatics 17, 763–774 (2001)CrossRefGoogle Scholar
  4. Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika 32, 241–254 (1967)CrossRefGoogle Scholar
  5. Karypis, G., Eui-Hong, H., Kumar, V.: Chameleon: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer 32(8), 68–75 (1999)Google Scholar
  6. Weston, C.R., Davis, R.J.: The JNK Signal Transduction Pathway. Curr Opin. Genet. Dev. 12, 14–21 (2002)CrossRefGoogle Scholar
  7. Gallo, K.A., Johnson, G.L.: Mixed-lineage Kinase Control of JNK and p38 MAPK Pathway. Nature Rev. Mol. Cell Biol. 3, 663–672 (2002)CrossRefGoogle Scholar
  8. Dong, C., Flavell, R.A., Dvais, R.J.: MAP Kinases in the Immune Response. Annu. Rev. Immunol. 20, 55–72 (2002)CrossRefGoogle Scholar
  9. Kyriakis, J.M., Avruch, J.: Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated By Stress And Inflammation. Physiol Reviews 81, 807–886 (2001)Google Scholar
  10. Kyriakis, J.M.: Signaling by the Germinal Center Kinase Family of Protein Kinases. J. Biol. Chem. 274, 5259–5262 (1999)CrossRefGoogle Scholar
  11. Pearson, G., et al.: Mitogen-activated Protein Kinase Pathways: Regulation and Physiological Functions. Endoc. Rev. 22, 153–183 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jinling Zhang
    • 1
  • Yinghua Lu
    • 1
  • Lin Wang
    • 1
    • 2
  • Hongxin Zhang
    • 1
  • Bo Zhang
    • 1
  • Yeqiu Wang
    • 1
  • Kai Wu
    • 1
  • Stefan Wolfl
    • 2
  1. 1.Biomedical center, School of Electronic Eng.Beijing University of Posts and TelecommunicationBeijingChina
  2. 2.Institute of Pharmacia & Molecular Biotech., Dept. Biology – BioanalyticUniversity HeidelbergHeidelbergGermany

Personalised recommendations