Strangeness Minimisation Feature Selection with Confidence Machines

  • Tony Bellotti
  • Zhiyuan Luo
  • Alex Gammerman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)


In this paper, we focus on the problem of feature selection with confidence machines (CM). CM allows us to make predictions within predefined confidence levels, thus providing a controlled and calibrated classification environment. We present a new feature selection method, namely Strangeness Minimisation Feature Selection, designed for CM. We apply this feature selection method to the problem of microarray classification and demonstrate its effectiveness.


Feature Selection Feature Subset Feature Selection Method Feature Selection Technique Region Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences of the USA 99, 6562–6566 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Bellotti, T., Luo, Z., Gammerman, A., van Delft, F.W., Saha, V.: Qualified predictions for microarray and proteomics pattern diagnostics with confidence machines. International Journal of Neural Systems 15(4), 247–258 (2005)CrossRefGoogle Scholar
  3. 3.
    Gammerman, A., Vovk, V.: Prediction algorithms and confidence measures based on algorithmic randomness theory. Theoretical Computer Science 287, 209–217 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Luo, Z., Bellotti, T., Gammerman, A.: Qualified predictions for proteomics pattern diagnostics with confidence machines. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 46–51. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Ross, M.E., Mahfouz, R., Onciu, M., Liu, H.-C., Zhou, X., Song, G., Shurtleff, S.A., Pounds, S., Cheng, C., Ma, J., Ribeiro, R.C., Rubnitz, J.E., Girtman, K., Williams, W.K., Raimondi, S.C., Liang, D.-C., Shih, L.-Y., Pui, C.-H., Downing, J.R.: Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104(12), 3679–3687 (2004)CrossRefGoogle Scholar
  7. 7.
    Ross, M.E., Zhou, X., Song, G., Shurtleff, S.A., Girtman, K., Williams, W.K., Liu, H.-C., Mahfouz, R., Raimondi, S.C., Lenny, N., Patel, A., Downing, J.R.: Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102, 2951–2959 (2003)CrossRefGoogle Scholar
  8. 8.
    Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Association of Science (USA) 99(10), 6567–6572 (2002)CrossRefGoogle Scholar
  9. 9.
    Tusher, V.G., Tibshirani, R., Chu, G.: Significant analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the USA 98, 5116–5121 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    van Delft, F.W., Bellotti, T., Hubank, M., Chaplin, T., Patel, N., Adamaki, M., Fletcher, D., Hann, I., Jones, L., Gammerman, A., Saha, V.: Hierarchical clustering analysis of gene expression profiles accurately identifies subtypes of acute childhood leukaemia. British Journal of Cancer 88, 54–54 (2003)Google Scholar
  11. 11.
    Vovk, V.: On-line confidence machines are well-calibrated. In: Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pp. 187–196. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  12. 12.
    Yeoh, E.-J., Ross, M.E., Shurtleff, S.A., Williams, W.K., Patel, D., Mahfouza, R., Behm, F.G., Raimondi, S.C., Relling, M.V., Patel, A., Cheng, C., Campana, D., Wilkins, D., Zhou, X., Li, J., Liu, H., Pui, C.-H., Evans, W.E., Naeve, C., Wong, L., Downing, J.R.: Classification, subtype discovery, and prediction of outcome in pedriatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tony Bellotti
    • 1
  • Zhiyuan Luo
    • 1
  • Alex Gammerman
    • 1
  1. 1.Computer Learning Research Centre, Royal HollowayUniversity of LondonEgham, SurreyUK

Personalised recommendations