Conceptual Classification to Improve a Web Site Content

  • Sebastián A. Ríos
  • Juan D. Velásquez
  • Hiroshi Yasuda
  • Terumasa Aoki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)


This paper presents a conceptual based approach for improving a Web site content. Usually Web Usage Mining (WUM) techniques study the visitors’ browsing behavior to obtain interesting knowledge. However, most of the work in the area leave behind the semantic information of web pages. We propose to combine the Concept-Based Knowledge Discovery in Text with the visitors sessions to perform the personalization task. This way, it is possible to obtain information about which are the users’ goals when browsing a web site. Moreover, it is possible to give better browsing recomendations and help managers improving the content of their Web site. We test this idea on a real Web site to show its effectiveness.


Extracurricular Activity Conceptual Approach Compositional Rule Cluster Session Conceptual Base Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chakrabarti, S.: Data Mining for Hypertext: A Tutorial Survey. SIGKDD Explorations 1 (2000)Google Scholar
  2. 2.
    Chau, R., Yeh, C.-H.: Filtering multilingual web content using fuzzy logic and self-organizing maps. Neural Comput. Appl. 13(2), 140–148 (2004)Google Scholar
  3. 3.
    Eirinaki, M., Lampos, C., Paulakis, S., Vazirgiannis, M.: Web personalization integrating content semantics and navigational patterns. In: WIDM 2004: Proceedings of the 6th annual ACM international workshop on Web information and data management, pp. 72–79. ACM Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Loh, S., Oliveira, J.P.M.D., Gameiro, M.A.: Knowledge discovery in texts for constructing decision support systems. Applied Intelligence 18(3), 357–366 (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Commun. ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  6. 6.
    Nakanishi, H., Turksen, I.B., Sugeno, M.: A review and comparison of six reasoning methods. Fuzzy Sets and Systems 57(3), 257–294 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Nielsen, J.: User Interface directions for the web. Communications of ACM 42(1), 65–72 (1999)CrossRefGoogle Scholar
  8. 8.
    Perkowitz, M., Etzioni, O.: Adaptive web sites. Commun. ACM 43(8), 152–158 (2000)CrossRefGoogle Scholar
  9. 9.
    Ríos, S.A., Velasquez, J.D., Vera, E.S., Yasuda, H., Aoki, T.: Establishing guidelines on how to improve the web site content based on the identification of representative pages. In: IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technology, September 2005, pp. 284–288. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  10. 10.
    Ríos, S.A., Velasquez, J.D., Vera, E.S., Yasuda, H., Aoki, T.: Using SOFM to Improve Web Site Text Content. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 622–626. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Ríos, S.A., Velasquez, J.D., Yasuda, H., Aoki, T.: Web Site Improvements Based on Representative Pages Identification. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1162–1166. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A Framework for the Evaluation of Session Reconstruction Heuristics in Web-Usage Analysis. INFORMS J. on Computing 15(2), 171–190 (2003)CrossRefGoogle Scholar
  13. 13.
    Velásquez, J.D., Ríos, S.A., Bassi, A., Yasuda, H., Aoki, T.: Towards the identification of keywords in the web site text content: A methodological approach. International Journal of Web Information Systems 1(1), 11–15 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastián A. Ríos
    • 1
  • Juan D. Velásquez
    • 2
  • Hiroshi Yasuda
    • 1
  • Terumasa Aoki
    • 1
  1. 1.Applied Information Engineering LaboratoryUniversity of TokyoJapan
  2. 2.Department of Industrial EngineeringUniversity of ChileChile

Personalised recommendations