Advertisement

On Certain Behavior of Scale-Free Networks Under Malicious Attacks

  • Tomasz Gierszewski
  • Wojciech Molisz
  • Jacek Rak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4166)

Abstract

This paper evaluates performance of scale-free networks in case of intentional removal of their nodes. The distinguishing feature of this kind of networks (Internet is an excellent example) is the power law distribution of node degrees.

An interesting behavior of scale-free networks, if node removal process is performed sufficiently long, is manifested by their migration to random networks. The main idea of our research is to quantify this process. In contrast to well explored parameters like: characteristic path length or clustering coefficient, we propose the new ones: mean maximum flow, centre of gravity of node degree distribution and other. To the best of our knowledge, these measures are proposed for the first time. Our results confirm that the migration process steps relatively fast.

Keywords

Cluster Coefficient Random Network Node Degree Malicious Attack Network Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–511 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–178 (1999)CrossRefGoogle Scholar
  3. 3.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network Robustness and Fragility: Percolation on Random Graphs (October 19, 2000) arXiv: cond mat/0007300 v2Google Scholar
  4. 4.
    Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Breakdown of the Internet under Intentional Attack. Physical Review Letters 86 (2001) arXiv:cond-mat/0010251Google Scholar
  5. 5.
    Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Efficiency of Scale-free Networks: Error and Attack Tolerance (2002) arXiv:cond mat/0205601Google Scholar
  6. 6.
    Dijkstra, E.: A Note on Two Problems in Connection with Graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ellison, R.J., Fisher, D.A., Linger, R.C., Lipson, H.F., Longstaff, T., Mead, N.R.: Survivable Network Systems: An Emerging Discipline. Carnegie Mellon University, Software Engineering Institute (Rev. 1999), Technical Report CMU/SEI-97-TR-013 (1997)Google Scholar
  8. 8.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. In: SIGCOMM, pp. 251–262 (1999)Google Scholar
  9. 9.
    Gierszewski, T., Rak, J.: On Reducing the Value of Aggregate Restoration Time when Assuring Survivability in Scale-free Networks. In: Proceedings of the 12th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and Communication Systems (MMB) together with 3rd Polish-German Teletraffic Symposium (PGTS). Dresden, Germany, September 12-15, pp. 99–104 (2004)Google Scholar
  10. 10.
  11. 11.
    Mead, N.R., Ellison, R.J., Linger, R.C., Longstaff, T., McHugh, J.: Survivable Network Analysis Method. Carnegie Mellon University, Software Engineering Institute,Technical Report CMU/SEI-2000-TR-013 (2000)Google Scholar
  12. 12.
    Molisz, W., Rak, J.: End-to-end Service Survivability under Attacks on Networks. In: Proc. 7th Regional NATO Conference on Military Communications and Information Systems, Zegrze, Poland, October 5, 2005, vol. 4, pp. 116–125 (2005)Google Scholar
  13. 13.
    Molisz, W., Rak, J.: Region Protection/Restoration Scheme in Survivable Networks. In: Gorodetsky, V., Kotenko, I., Skormin, V.A. (eds.) MMM-ACNS 2005. LNCS, vol. 3685, pp. 442–447. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mukherjee, B.: WDM Optical Communication Networks: Progress and Challenges. IEEE Journal on Selected Areas in Communications 18(10), 1810–1823 (2000)CrossRefGoogle Scholar
  15. 15.
    Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power-laws and the AS level Internet topology. IEEE/ACM Transactions on Networking 11(4), 514–524 (2003)CrossRefGoogle Scholar
  16. 16.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-world’ Networks. In: Nature 393, pp. 440–442. Nature Macmillan Publishers Ltd., Basingstoke (1998)Google Scholar
  17. 17.
    Yook, S.H., Jeong, H., Barabási, A.-L.: Modeling the Internet’s large-scale topology. In: Proc. of the National Academy of Sciences (PNAS), vol. 99, pp. 13382–13386 (2002)Google Scholar
  18. 18.
    Zhu, K., Zhang, H., Mukherjee, B.: A Comprehensive Study on Next-generation Optical Grooming Switches. IEEE Journal on Selected Areas in Communications 21(7), 1173–1186 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tomasz Gierszewski
    • 1
  • Wojciech Molisz
    • 1
  • Jacek Rak
    • 1
  1. 1.Gdansk University of TechnologyGdanskPoland

Personalised recommendations