Advertisement

MAT Logic: A Temporal×Modal Logic with Non-deterministic Operators to Deal with Interactive Systems in Communication Technologies

  • Gabriel Aguilera
  • Alfredo Burrieza
  • Pablo Cordero
  • Inmaculada P. de Guzmán
  • Emilo Muñoz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)

Abstract

In this paper, the Multi-flow Asynchronous Temporal Logic, called MAT Logic, is presented. MAT Logic is a new temporal×modal logic with non-deterministic operators among time flows as accessibility relations. The main goal of this work has been the design and description of a logic that could be capable of managing communications among systems with not necessarily synchronizable time flows. In order to better understand the design of the logic, an example in the field of communications is given.

Keywords

Modal Logic Temporal Logic Axiom System Linear Temporal Logic Execution State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ancona, D., Mascardi, V.: Coo-bdi: Extending the bdi model with cooperativity. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI), vol. 2990, pp. 109–134. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  3. 3.
    Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The boid architecture: conflicts between beliefs, obligations, intentions and desires. In: AGENTS 2001: Proceedings of the fifth international conference on Autonomous agents, pp. 9–16 (2001)Google Scholar
  4. 4.
    Burgess, J.P.: Basic tense logic. In: Handbook of philosophical logic, II. Synthese Lib., vol. 165, pp. 89–133. Reidel, Dordrecht (1984)Google Scholar
  5. 5.
    Burrieza, A., de Guzmán, I.P.: A new algebraic semantic approach and some adequate connectives for computation with temporal logic over discrete time. J. Appl. Non-Classical Logics 2(2), 181–200 (1992)MATHMathSciNetGoogle Scholar
  6. 6.
    Burrieza, A., de Guzmán, I.P.: A functional approach for temporal modal logics. Acta Inf. 39(2), 71–96 (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Burrieza, A., de Guzmán, I.P., Muñoz, E.: Indexed flows in temporal×modal logic with functional semantics. In: Proceedings Ninth International Symposium on Temporal Representation and Reasoning (TIME 2002), pp. 146–153 (2002)Google Scholar
  8. 8.
    De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Trans. Comput. Logic 5(1), 79–128 (2004)CrossRefGoogle Scholar
  9. 9.
    Ehrich, H.-D., Caleiro, C., Sernadas, A., Denker, G.: Logics for specifying concurrent information systems. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp. 167–198. Kluwer, Dordrecht (1998)Google Scholar
  10. 10.
    Dix, A.J.: Formal Methods in Human-Computer interaction. In: Nondeterminism as a paradigm for understanding the user interface, ch. 4, pp. 97–127. Cambridge University Press, Cambridge (1990)Google Scholar
  11. 11.
    Halpern, J.Y., Vardi, M.Y.: Reasoning about Knowledge and Time in Asynchronous Systems. ACM: Association for Computer Machinery, 53–65 (1988)Google Scholar
  12. 12.
    Johnson, C.W.: Using temporal logic to prototype interactive systems. In: Diaper, D., Gilmore, D.J., Cockton, G., Shackel, B. (eds.) INTERACT, pp. 1019–1020. North-Holland, Amsterdam (1990)Google Scholar
  13. 13.
    Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer, New York (1992) SpecificationGoogle Scholar
  14. 14.
    Masini, A., Maggiolo-Schettini, A.: Ttl: A formalism to describe local and global properties of distributed systems. Informatique Theorique et Applications 26, 115–162 (1992)MATHMathSciNetGoogle Scholar
  15. 15.
    Mishchenko, A., Brayton, R.K.: A theory of non-deterministic networks. In: ICCAD, pp. 709–717. IEEE Computer Society/ACM (2003)Google Scholar
  16. 16.
    Ramanujam, R.: Locally linear time temporal logic. In: LICS, pp. 118–127 (1996)Google Scholar
  17. 17.
    Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: KR, pp. 439–449 (1992)Google Scholar
  18. 18.
    Thiagarajan, P.S., Henriksen, J.G.: Distributed versions of linear time temporal logic: A trace perspective. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1492, pp. 643–681. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Thomason, R.H.: Combinations of tense and modality. In: Handbook of philosophical logic, II. Synthese Lib., vol. 165, pp. 135–165. Reidel, Dordrecht (1984)Google Scholar
  20. 20.
    Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems. Kluwer Academic Publishers, Norwell (1985)Google Scholar
  21. 21.
    Torroni, P.: Computational logic in multi-agent systems: Recent advances and future directions. Annals of Mathematics and Artificial Intelligence 42(1-3), 293–305 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gabriel Aguilera
    • 1
  • Alfredo Burrieza
    • 2
  • Pablo Cordero
    • 1
  • Inmaculada P. de Guzmán
    • 1
  • Emilo Muñoz
    • 1
  1. 1.Departamento de Matemática Aplicada 
  2. 2.Departamento de FilosofíaUniversidad de MálagaSpain

Personalised recommendations