A Reactive Lazy PRM Approach for Nonholonomic Motion Planning

  • Abraham Sánchez
  • Rodrigo Cuautle
  • René Zapata
  • Maria Osorio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)


This work describes a reactive lazy PRM planner, that integrates the lazy PRM planning approach and the reactive control, using a DVZ (Deformable Virtual Zone). The lazy PRM approach calculates a collision-free and feasible path for the mobile robot before it starts moving under the permanent protection of its DVZ. In the absence of dynamic obstacles, the control is performed by the lazy PRM approach and does not require reflex commands. In the presence of dynamic obstacles in its path, the reactive approach takes the control and generates commands to move the robot away from the intruder obstacles before forcing its DVZ to go back to the original state. Experimental results show the effectiveness of the planner proposed here.


Nonholonomic motion planning deformable virtual zone lazy PRM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, R.A.: Robot beings. In: International Workshop on Intelligent Robots and Systems, pp. 2–10 (1989)Google Scholar
  2. 2.
    Anderson, T.L.: Autonomous robots and emergent behaviours: A set of primitive behaviours for mobile robot control. In: IROS 1990 (1990)Google Scholar
  3. 3.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotic Research 5(1), 90–98 (1986)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Zapata, R.: Quelques aspects topologiques de la planification de mouvements et des actions réflexes en robotique mobile, Thèse d’Etat, University of Montpellier II (1991)Google Scholar
  5. 5.
    Zapata, R., Lépinay, P., Thompson, P.: Reactive behaviors of fast mobile robots. Journal of Robotic Systems 11(1), 13–20 (1994)CrossRefGoogle Scholar
  6. 6.
    Kavraki, L.E., Švetska, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)CrossRefGoogle Scholar
  7. 7.
    Švestka, P., Overmars, M.H.: Motion planning for car-like using a probabilistic learning approach. The International Journal of Robotics Research 16(2), 119–143 (1997)CrossRefGoogle Scholar
  8. 8.
    Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. In: Workshop on Algorithmic Foundations on Robotics (2000)Google Scholar
  9. 9.
    Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proc. of the IEEE Robotics and Automation Conference, pp. 521–528 (2000)Google Scholar
  10. 10.
    Sánchez, A., Zapata, R., Arenas, A.: Motion planning for car-like robots using a lazy probabilistic roadmap method. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 1–10. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Sánchez, A., Zapata, R., Lanzoni, C.: On the use of low-discrepancy sequences in nonholonomic motion planning. In: Proc. of the IEEE Robotics and Automation Conference, pp. 3764–3769 (2003)Google Scholar
  12. 12.
    Reeds, J.A., Shepp, R.A.: Optimal paths for a car that goes both forward and backwards. Pacific Journal of Mathematics 145(2), 367–393 (1990)MathSciNetGoogle Scholar
  13. 13.
    Cuautle, P.R.: Planificación de movimientos en ambientes dinámicos utilizando un enfoque lazy PRM reactivo. Tesis de Maestria, FCC-BUAP (in spanish) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Abraham Sánchez
    • 1
  • Rodrigo Cuautle
    • 1
  • René Zapata
    • 2
  • Maria Osorio
    • 1
  1. 1.Facultad de Ciencias de la ComputaciónBUAPPuebla, Pue.México
  2. 2.LIRMM, UMR5506 CNRSMontpellierFrance

Personalised recommendations