Assessing the Value of Future and Present Options in Real-Time Planning

  • Emmanuel Martinez
  • Ramon F. Brena
  • Hugo Terashima-Marín
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)

Abstract

Highly dynamic environments with uncertainty make inadequate long or rigid plans, because they are frequently dismissed by the arrival or new unexpected situations. In these environments, most approaches eliminate planning altogether, and evaluate just the current situation. We are interested in on-line planning, where execution and planning are interleaved, and short plans are continuously re-evaluated. Now, the plan evaluation itself could be an important issue. We have proposed in our recent work to evaluate plans taking into account the quantity and quality of future options, not just the single best future option. In this paper we present a detailed evaluation of real-time planning performance, changing the importance given to the current situation, to the best future option, and to the set of future options respective evaluations, in the context of the simulated soccer Robocup competition. Our results show that a well-tuned combination of the mentioned factors could outperform any of them alone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J., Hendler, J., Tate, A.: Readings in Planning. Representation and Reasoning Series. Morgan Kaufmann, San Mateo (1990)Google Scholar
  2. 2.
    Bowling, M., Browning, B., Veloso, M.: Plays as effective multiagent plans enabling opponent-adaptive play selection. In: Proceedings of International Conference on Automated Planning and Scheduling, ICAPS 2004 (2004)Google Scholar
  3. 3.
    Brena, R., Martinez, E.: Maximizing future options: An on-line real-time planning method. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 970–979. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K., Kummeneje, J., Murray, J., Noda, I., Obst, O., Riley, P., Steffens, T., Wang, Y., Yin, X.: Users manual: Robocup soccer server (for soccerserver version 7.07 and later)Google Scholar
  5. 5.
    de Boer, R., Kok, J.: The incremental development of a synthetic multi-agent system: The uva trilearn (2001)Google Scholar
  6. 6.
    Farahany, A., Rokooey, M., Salehe, M., Vosoughpour, M.: Mersad 2004 team description (2004)Google Scholar
  7. 7.
    Frank, I., Tanaka-Ishii, K., Arai, K., Matsubara, H.: The statistics proxy server. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 303–308. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Getoor, L., Ottosson, G., Fromherz, M., Carlson, B.: Effective redundant constraints for online scheduling. In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI 1997), Providence, Rhode Island, pp. 302–307. AAAI Press/MIT Press (1997)Google Scholar
  9. 9.
    Groen, F., Spaan, M., Vlassis, N.: Robot soccer: Game or science. In: Proceedings CNR-2002, Editura Universitaria Craiova (October 2002)Google Scholar
  10. 10.
    Koenig, S.: Agent-centered search. AI Magazine 22(4), 109–131 (2001)MathSciNetGoogle Scholar
  11. 11.
    Kok, J., Spaan, M., Vlassis, N.: Non-communicative multi-robot coordination in dynamic environments. Robotics and Autonomous Systems 50(2-3), 99–114 (2005)CrossRefGoogle Scholar
  12. 12.
    Martinez, E.: A real-time planning method for Robocup (in spanish). Master’s thesis, Tecnologico de Monterrey, Mexico (2005)Google Scholar
  13. 13.
    Riley, P., Veloso, M.: Planning for distributed execution through use of probabilistic opponent models. In: IJCAI-2001 Workshop PRO-2: Planning under Uncertainty and Incomplete Information (2001)Google Scholar
  14. 14.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  15. 15.
    Stone, P.: Layered learning in multiagent systems. In: AAAI/IAAI, p. 819 (1997)Google Scholar
  16. 16.
    Stone, P., Veloso, M.: Using decision tree confidence factors for multiagent control. In: Sycara, K.P., Wooldridge, M. (eds.) Proceedings of the 2nd International Conference on Autonomous Agents (Agents 1998), pp. 86–91. ACM Press, New York (1998)CrossRefGoogle Scholar
  17. 17.
    Stone, P., Veloso, M.M.: Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 8(3), 345–383 (2000)CrossRefGoogle Scholar
  18. 18.
    Zweben, M., Fox, M.S.: Intelligent Scheduling. Morgan Kaufmann, San Francisco (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emmanuel Martinez
    • 1
  • Ramon F. Brena
    • 1
  • Hugo Terashima-Marín
    • 1
  1. 1.Center for Intelligent SystemsTecnologico de Monterrey 

Personalised recommendations