Word Sense Disambiguation Based on Word Sense Clustering

  • Henry Anaya-Sánchez
  • Aurora Pons-Porrata
  • Rafael Berlanga-Llavori
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)

Abstract

In this paper we address the problem of Word Sense Disambiguation by introducing a knowledge-driven framework for the disambiguation of nouns. The proposal is based on the clustering of noun sense representations and it serves as a general model that includes some existing disambiguation methods. A first prototype algorithm for the framework, relying on both topic signatures built from WordNet and the Extended Star clustering algorithm, is also presented. This algorithm yields encouraging experimental results for the SemCor corpus, showing improvements in recall over other knowledge-driven methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agirre, E., López, O.: Clustering wordnet word senses. In: Proceedings of the Conference on Recent Advances on Natural Language Processing, Bulgary, pp. 121–130 (2003)Google Scholar
  2. 2.
    Agirre, E., Rigau, G.: Word Sense Disambiguation Using Conceptual Density. In: Proceedings of the 16th Conference on Computational Linguistic, Denmark, vol. 1, pp. 16–22 (1996)Google Scholar
  3. 3.
    Bordag, S.: Word Sense Induction: Triplet-Based Clustering and Automatic Evaluation. In: Accepted to the 11st Conference of the European Chapter of the Association for Computational Linguistic, Italy (2006) Google Scholar
  4. 4.
    Cowie, J., Guthrie, J.A., Guthrie, L.: Lexical disambiguation using simulated annealing. In: Proceedings of the 14th International Conference on Computational Linguistics, France, vol. 1, pp. 359–365 (1992)Google Scholar
  5. 5.
    Fernández-Amorós, D., Gonzalo, J., Verdejo, F.: The Role of Conceptual Relationsin Word Sense Disambiguation. In: Proceedings of the 6th International Workshop on Applications of Natural Language for Information Systems, Spain, pp. 87–98 (2001)Google Scholar
  6. 6.
    Gil-García, R.J., Badía-Contelles, J.M., Pons-Porrata, A.: Extended star clustering algorithm. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 480–487. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ide, N., Véronis, J.: Word Sense Disambiguation: The State of the Art. Computational Linguistics 24(1), 1–40 (1998)Google Scholar
  8. 8.
    Lesk, M.: Automatic Sense Disambiguation Using Machine Readable Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone. In: Proceedings of the 5th Annual International Conference on Systems Documentation, Canada, pp. 24–26 (1986)Google Scholar
  9. 9.
    Lin, C.-Y., Hovy, E.: The Automated Acquisition of Topic Signatures for Text Summarization. In: Proceedings of the COLING Conference, France, pp. 495–501 (2000)Google Scholar
  10. 10.
    Mihalcea, R., Moldovan, D.I.: EZ. WordNet: Principles for Automatic Generation of a Coarse Grained WordNet. In: Proceedings of the FLAIRS Conference, Florida, pp. 454–458 (2001)Google Scholar
  11. 11.
    Miller, G.A., Leacock, C., Randee, T., Bunker, R.: A Semantic Concordance. In: Proceedings of the 3rd DARPA Workshop on Human Language Technology, New Jersey, pp. 303–308 (1993)Google Scholar
  12. 12.
    Miller, G.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  13. 13.
    Montoyo, A., Suárez, A., Rigau, G., Palomar, M.: Combining Knowledge- and Corpus-based Word-Sense-Disambiguation Methods. Journal of Artificial Intelligence Research 23, 299–330 (2005)MATHGoogle Scholar
  14. 14.
    Niu, C., Li, W., Srihari, R.K., Li, H., Crist, L.: Context Clustering for Word Sense Disambiguation Based on Modeling Pairwise Context Similarities. In: SENSEVAL- 3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Spain, pp. 187–190 (2004)Google Scholar
  15. 15.
    Patwardhan, S., Banerjee, S., Pedersen, T.: Using Measures of Semantic Relatedness for Word Sense Disambiguation. In: Proceedings of the 4th International Conference on Computational Linguistics and Intelligent Text Processing, Mexico, pp. 16–22 (2003)Google Scholar
  16. 16.
    Pedersen, T., Purandare, A., Kulkarni, A.: Name Discrimination by Clustering Similar Contexts. In: Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing, Mexico, pp. 226–237 (2005)Google Scholar
  17. 17.
    Rosso, P., Masulli, F., Buscaldi, D., Pla, F., Molina, A.: Automatic Noun Sense Disambiguation. In: Proceedings of the 4th International Conference on Computational Linguistics and Intelligent Text Processing, Mexico, pp. 16–22 (2003)Google Scholar
  18. 18.
    Rosso, P., Montes-y-Gómez, M., Buscaldi, B., Pancardo-Rodríguez, A., Villaseñor- Pineda, L.: Two Web-Based Approaches for Noun Sense Disambiguation. In: Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing, Mexico, pp. 267–279 (2005)Google Scholar
  19. 19.
    Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Information Retrieval. Journal of the American Society for Information Science 18(11), 613–620 (1975)MATHGoogle Scholar
  20. 20.
    Udani, G., Dave, S., Davis, A., Sibley, T.: Noun Sense Induction Using Web Search Results. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Brazil, pp. 657–658 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henry Anaya-Sánchez
    • 1
  • Aurora Pons-Porrata
    • 1
  • Rafael Berlanga-Llavori
    • 2
  1. 1.Center of Pattern Recognition and Data MiningUniversidad de OrienteCuba
  2. 2.Universitat Jaume ICastellónSpain

Personalised recommendations