Detection of Repetitive Patterns in Action Sequences with Noise in Programming by Demonstration

  • Raqueline R. de M. Penteado
  • Sérgio R. P. Da Silva
  • H. Furuta
  • Muriel de S. Godoi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)


Software applications that exploit implicit programming by demonstration should be able to detect repetitive patterns in user’s actions in an autonomous and efficient way. We present a software agent for the detection of repetitive action patterns that makes use of domain knowledge in this process. We explain its design rationale and discuss some of its advantages, by comparing it with the classic algorithm KRM, which does not make use of domain knowledge. We demonstrate that our agent might have a more efficient detection process for repetitive tasks since it activates the search algorithm fewer times. Moreover, we show that it can detect repetitive tasks even in the presence of noise in the action sequence.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cypher, A. (ed.): Watch What I Do: Programming by Demonstration. The MIT Press, Cambridge (1993)Google Scholar
  2. 2.
    Cypher, A.: Eager: Programming repetitive tasks by demonstration. In: Cypher, A. (ed.) Watch What I Do: Programming by Demonstration, pp. 205–217. The MIT Press, Cambridge (1993)Google Scholar
  3. 3.
    De Souza, C.S.: The Semiotic Engineering of Human-Computer Interaction. MIT Press, Cambridge (2005)Google Scholar
  4. 4.
    Godoi, M.S.: Integração de Técnicas de Programação por Demonstração e Geração Automática de Interfaces. Trabalho de Graduação. Departamento de Informática, UEM (2004)Google Scholar
  5. 5.
    Kammersgaard, J.: Four different perspectives on human- computer interaction. International Journal of Man- Machine Studies (28), 343–362 (1988)Google Scholar
  6. 6.
    Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid Identification of Repeated Patterns in Strings, Trees and Arrays. In: 4th Annual ACM Symposium on Theory of Computing, Denver, Colorado, May 1-3, pp. 125–136 (1972)Google Scholar
  7. 7.
    Kosbie, D.S., Myers, B.A.: A System-Wide Macro Facility Based on Aggregate Events: A Proposal. In: Cypher, A. (ed.) Watch What I Do: Programming by Demonstration, pp. 433–444. MIT Press, Cambridge (1993)Google Scholar
  8. 8.
    Lau, T., Wolfman, S.A., Domingos, P., Weld, D.S.: Learning Repetitive Text-Editing Procedures with SMARTedit. In: Lierberman, H. (ed.) Your Wish Is My Command: Programming by Example, pp. 209–225. Morgan Kaufmann, San Francisco (2001)CrossRefGoogle Scholar
  9. 9.
    Levinson, S.C.: Pragmatics. Cambridge University Press, Cambridge (1983)Google Scholar
  10. 10.
    Norman, D.A.: How might people interact with agents. CACM 37(7), 68–71 (1994)Google Scholar
  11. 11.
    Penteado, R.R.: COM O Uso de Conhecimento Prévio do Domínio em Aplicações na Programação por Demonstração. Dissertação de Mestrado. Departamento de Informática, UEM, 2004. Google Scholar
  12. 12.
    Ruvini, J., Dony, C.: Learning Users’ Habits to Automate Repetitive Tasks. In: Lierberman, H. (ed.) Your Wish Is My Command: Programming by Example, pp. 271–295. Morgan Kaufmann, Sao Francisco (2001)CrossRefGoogle Scholar
  13. 13.
    Ruvini, J.D.: The Challenges of Implicit Programming by Example. In: IUI 2004, Madeira, Funchal, Portugal, pp. 13-16 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Raqueline R. de M. Penteado
    • 1
  • Sérgio R. P. Da Silva
    • 1
  • H. Furuta
    • 1
  • Muriel de S. Godoi
    • 2
  1. 1.Departamento de InformáticaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Departamento de ComputaçãoUniversidade Federal de São CarlosSão carlosBrazil

Personalised recommendations