Time-Space Ensemble Strategies for Automatic Music Genre Classification

  • Carlos N. SillaJr.
  • Celso A. A. Kaestner
  • Alessandro L. Koerich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)


In this paper we propose a novel time–space ensemble–based approach for the task of automatic music genre classification. Ensemble strategies employ several classifiers to different views of the problem–space, and combination rules in order to produce the final classification decision. In our approach we employ audio signal segmentation in time intervals and also problem space decomposition. Initially the music signal is split in time segments; features are extracted from these music signal segments and the one against all (OAA) and round robin (RR) strategies, which implement a space decomposition by using several binary classifiers, are applied. Finally, the outputs of the set of classifiers are combined to produce the final result. We test our proposition in a music database of 1.200 music samples from four different music genres. Experimental results show that time segment decomposition is more important than the space decomposition produced by the OAA and RR strategies, although they produce better results relative to the use of single classifiers and feature vectors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing 10, 293–302 (2002)CrossRefGoogle Scholar
  2. 2.
    Aucouturier, J.J., Pachet, F.: Representing musical genre: A state of the art. Journal of New Music Research 32, 83–93 (2003)CrossRefGoogle Scholar
  3. 3.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transaction on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)CrossRefGoogle Scholar
  4. 4.
    Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)MathSciNetGoogle Scholar
  5. 5.
    Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptative mixtures of local experts. Neural Computation 3, 79–87 (1991)CrossRefGoogle Scholar
  6. 6.
    Schapire, R.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)Google Scholar
  7. 7.
    Frnkranz, J.: Pairwise classification as an ensemble technique. In: Proceedings of the 13th European Conference on Machine Learning, Helsinki, Finland, pp. 97–110. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Li, T., Ogihara, M., Li, Q.: A comparative study on content-based music genre classification. In: Proceedings of the 26th annual international ACM SIGIR Conference on Research and Development in Informaion Retrieval, Toronto, Canada, pp. 282–289 (2003)Google Scholar
  9. 9.
    Ho, T.K.: Nearest neighbors in random subspaces. In: Proc. of the 2nd Int’l Workshop on Statistical Techniques in Pattern Recognition, pp. 640–648 (1998)Google Scholar
  10. 10.
    Grimaldi, M., Cunningham, P., Kokaram, A.: An evaluation of alternative feature selection strategies and ensemble techniques for classifying music. In: Workshop on Multimedia Discovery and Mining at ECML/PKDD 2003 (2003)Google Scholar
  11. 11.
    Grimaldi, M., Cunningham, P., Kokaram, A.: A wavelet packet representation of audio signals for music genre classification using different ensemble and feature selection techniques. In: Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval, pp. 102–108. ACM Press, New York (2003)CrossRefGoogle Scholar
  12. 12.
    Costa, C.H.L., Valle Jr., J.D., Koerich, A.L.: Automatic classification of audio data. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 562–567 (2004)Google Scholar
  13. 13.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34, 1–47 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Tzanetakis, G., Cook, P.: Marsyas: A framework for audio analysis. Organized Sound 4, 169–175 (1999)CrossRefGoogle Scholar
  16. 16.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  17. 17.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlos N. SillaJr.
    • 1
  • Celso A. A. Kaestner
    • 1
  • Alessandro L. Koerich
    • 1
  1. 1.Postgraduate Programme in Computer Science (PPGIA)Pontifical Catholic University of Paraná (PUCPR)CuritibaBrazil

Personalised recommendations