Pattern Sequencing Problems by Clustering Search

  • Alexandre C. M. Oliveira
  • Luiz A. N. Lorena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)

Abstract

Modern search methods for optimization consider hybrid search metaheuristics those employing general optimizers working together with a problem-specific local search procedure. The hybridism comes from the balancing of global and local search procedures. A challenge in such algorithms is to discover efficient strategies to cover all the search space, applying local search only in actually promising search areas. This paper proposes the Clustering Search (*CS): a generic way of combining search metaheuristics with clustering to detect promising search areas before applying local search procedures. The clustering process aims to gather similar information about the problem at hand into groups, maintaining a representative solution associated to this information. Two applications to combinatorial optimization are examined, showing the flexibility and competitiveness of the method.

Keywords

Hybrid search metaheuristic pattern sequencing problem Clustering search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moscato, P.: Memetic algorithms: a short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, London (1999)Google Scholar
  2. 2.
    Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Computation 12(3), 273–302 (2004)CrossRefGoogle Scholar
  3. 3.
    Jelasity, M., Ortigosa, P., García, I.: UEGO, an Abstract Clustering Technique for Multimodal Global Optimization. Journal of Heuristics 7(3), 215–233 (2001)MATHCrossRefGoogle Scholar
  4. 4.
    Glover, F.: A template for scatter search and path relinking. In: Selected Papers from the Third European Conference on Artificial Evolution, pp. 3–54. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Goldberg, D.E.: Genetic algorithms in search, optimisation and machine learning. Addison-Wesley, Reading (1989)Google Scholar
  6. 6.
    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Oliveira, A.C.M., Lorena, L.A.N.: Detecting promising areas by evolutionary clustering search. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 385–394. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers and Operations Research 24, 1097–1100 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chaves, A.A., Lorena, L.A.N.: Hybrid algorithms with detection of promising areas for the prize collecting travelling salesman problem. In: HIS 2005, vol. 5, pp. 49–54 (2005)Google Scholar
  10. 10.
    Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39, 653–684 (2000)Google Scholar
  11. 11.
    Fink, A., Voss, S.: Applications of modern heuristic search methods to pattern sequencing problems. Computers and Operations Research 26(1), 17–34 (1999)MATHCrossRefGoogle Scholar
  12. 12.
    Linhares, A.: Industrial pattern sequencing problems: some complexity results and new local search models. Doctoral Thesis, INPE, S. José dos Campos, Brazil (2002)Google Scholar
  13. 13.
    Möhring, R.: Graph problems related to gate matrix layout and PLA folding. Computing 7, 17–51 (1990)Google Scholar
  14. 14.
    Golumbic, M.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)MATHGoogle Scholar
  15. 15.
    Syswerda, G.: Schedule optimization using genetic algorithms. In: Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, pp. 332–349 (1991)Google Scholar
  16. 16.
    Mendes, A., Linhares, A.: A multiple population evolutionary approach to gate matrix layout. Systems Science, Taylor & Francis 35(1), 13–23 (2004)MATHGoogle Scholar
  17. 17.
    Oliveira, A.C.M., Lorena, L.A.N.: A Constructive Genetic Algorithm for Gate Matrix Layout Problems. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 21(8), 969–974 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexandre C. M. Oliveira
    • 1
  • Luiz A. N. Lorena
    • 2
  1. 1.Departamento de InformáticaUniversidade Federal do Maranhão – UFMASão LuísBrazil
  2. 2.Laboratório Associado de Computação e Matemática AplicadaInstituto Nacional de Pesquisas Espaciais – INPESão José dos CamposBrazil

Personalised recommendations