Using Computational Intelligence and Parallelism to Solve an Industrial Design Problem

  • Fernando Asteasuain
  • Jessica A. Carballido
  • Gustavo E. Vazquez
  • Ignacio Ponzoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)


In this work we present a critical analysis of three novel parallel-distributed implementations of a multi-objective genetic algorithm (pdGAs) for instrumentation design applications. The pdGAs aim at establishing a sensible configuration of sensors for the initialization of instrumentation design studies of industrial processes. They were built on the basis of an evolutionary island model, the master-worker paradigm, and different migration and parameter control policies. The performance of the resulting implementations was assessed by testing algorithmic behavior on an industrial example that corresponds to an ammonia synthesis plant. The three pdGAs’ results were highly satisfactory in terms of speed-up, efficiency and instrumentation quality, thus revealing to constitute competitive tools with strong potential for their use in the industrial area. As well, from an overall point of view, the pdGA version with adaptive parameter control represents the best implementation’s alternative.


Genetic Algorithms Distributed Computing Instrumentation Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Romagnoli, J.A., Sánchez, M.C.: Data Processing and Reconciliation for Chemical Process Operations. Academic Press, London (1999)Google Scholar
  2. 2.
    Ponzoni, I., Sánchez, M.C., Brignole, N.B.: A New Structural Algorithm for Observability Classification. Ind. Eng. Chem. Res. 38(8), 3027–3035 (1999)CrossRefGoogle Scholar
  3. 3.
    Coello Coello, C.A.: A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems 1(3), 269–308 (1999)Google Scholar
  4. 4.
    Carballido, J.A., Ponzoni, I., Brignole, N.B.: A Novel Application of Evolutionary Computing in Process Systems Engineering. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 12–22. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Sena, G.A., Megherbi, D., Isern, G.: Implementation of a Parallel Genetic Algorithm on a Cluster of Workstations. FGCS 17, 477–488 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE Trans. Evolutionary Comput. 6, 443–462 (2002)CrossRefGoogle Scholar
  7. 7.
    Cantú-Paz, E., Goldberg, D.E.: Predicting speedups of idealized bounding cases of parallel genetic algorithms. In: 7 Int. Conf. on Genetic Algorithms, pp. 338–345. Morgan Kaufmann, San Francisco (1997)Google Scholar
  8. 8.
    Cantú-Paz, E., Goldberg, D.E.: Efficient Parallel genetic algorithms: theory and practice. Comput. Methods Appl. Mech. Engrg. 186, 221–238 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Tongchim, S., Chongstitvatana, P.: Parallel Genetic Algorithm with Parameter Adaptation. Information Processing Letters 82, 47–54 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Alba, E., Troya, J.M.: Analysing synchronous and asynchronous parallel distributed genetic algorithms. FGCS 17, 451–465 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Comput. 7, 144–173 (2003)CrossRefGoogle Scholar
  12. 12.
    Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary Comp.: Comments on the History and Current State. IEEE Trans. Evolutionary Comput. 1(1), 3–17 (1997)CrossRefGoogle Scholar
  13. 13.
    Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evolutionary Comput. 3, 124–141 (1999)CrossRefGoogle Scholar
  14. 14.
    Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters 82, 7–13 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R., Sunderam, V.: PVM: Parallel Virtual Machine. A users guide and tutorial for network parallel computing. MIT Press, Cambridge (1994)Google Scholar
  16. 16.
    Pereira, C., Lapa, C.: Parallel island GA applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization. Annals of Nuclear Energy, 1665–1675 (2003)Google Scholar
  17. 17.
    Safe, M., Carballido, J.A., Ponzoni, I., Brignole, N.B.: On Stopping Criteria for Genetic Algorithms. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 405–413. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)MATHGoogle Scholar
  19. 19.
    Bike, S.: Design of an Ammonia Synthesis Plant, CACHE Case Study. Department of Chemical Engineering, Carnegie Mellon University (1985)Google Scholar
  20. 20.
    Vazquez, G.E., Ponzoni, I., Sánchez, M.C., Brignole, N.B.: ModGen: A Model Generator for Instrumentation Analysis. Advances in Engineering Software 32, 37–48 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fernando Asteasuain
    • 1
  • Jessica A. Carballido
    • 1
  • Gustavo E. Vazquez
    • 1
  • Ignacio Ponzoni
    • 1
    • 2
  1. 1.Laboratorio de Investigación y Desarrollo en Computación Científica (LIDeCC), Departamento de Ciencias e Ingeniería de la ComputaciónUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Planta Piloto de Ingeniería Química – CONICET, Complejo CRIBABBBahía BlancaArgentina

Personalised recommendations