An Image Analysis Methodology Based on Deterministic Tourist Walks

  • Mônica G. Campiteli
  • Alexandre S. Martinez
  • Odemir M. Bruno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)


Textures are important visual attribute used in image analysis. This paper presents a novel methodology, based on a deterministic walk, to texture analysis and texture characterization. Most of the methods adopted to classify textures deal with a defined scale of texture. The method proposed explores the set in all scales and is able to characterize efficiently different texture classes. The paper presents the deterministic walk technique and its results for two experiments using Brodatz images.


Feature Vector Joint Distribution Texture Analysis Transient Time Neighborhood Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, S.: On discontinuity-adaptive smoothness priors in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), 576–586 (1995)CrossRefGoogle Scholar
  2. 2.
    Howarth, P., Ruger, S.: Evaluation of texture features for content-based image retrieval. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 326–334. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  4. 4.
    Scholl, J., Schol-Paschinger, E.: Classification by restricted random walks. Pattern Recognition 36, 1279–1290 (2003)CrossRefGoogle Scholar
  5. 5.
    Derrida, B.: From random walks to spin glasses. Phys. D 107(2–4), 186–198 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freund, H., Grassberger, P.: The Red Queens walk. Physica A 190(3-4), 218–237 (1992)CrossRefGoogle Scholar
  7. 7.
    Bunimovich, L.A., Troubetzkoy, S.E.: Recurrence properties of Lorentz lattice gas cellular automata. J. Stat. Phys. 67(1-2), 289–302 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bunimovich, L.A.: Deterministic walks in random environments. Physica D 187, 20–29 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gale, D., Propp, J., Sutherland, S., Troubetzkoy, S.: Further travels with my ant. Math. Inteligencer 17(3), 48–56 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    aes Campiteli, M.G., Batista, P.D., Kinouchi, O., Martinez, A.S.: Deterministic walks as an algorithm of pattern recognition. Phys. Rev. E (2006) (submitted)Google Scholar
  11. 11.
    Lima, G.F., Martinez, A.S., Kinouchi, O.: Deterministic walks in random media. Phys. Rev. Lett. 87(1), 010603 (2001)CrossRefGoogle Scholar
  12. 12.
    Stanley, H.E., Buldyrev, S.V.: Statistical physics - the salesman and the tourist. Nature (London) 413(6854), 373–374 (2001)CrossRefGoogle Scholar
  13. 13.
    Kinouchi, O., Martinez, A.S., Lima, G.F., Loureno, G.M., Risau-Gusman, S.: Deterministic walks in random networks: an application to thesaurus graphs. Physica A 315(3/4), 665–676 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Boyer, D., Miramontes, O., Ramos-Fernandez, G., Mateos, J.L., Cocho, G.: Modeling the searching behavior of social monkeys. Physica A 342(1-2), 329–335 (2004)CrossRefGoogle Scholar
  15. 15.
    Boyer, D., Larralde, H.: Looking for the right thing at the right place: Phase transition in an agent model with heterogeneous spatial resources. Complexity 10(3), 52–55 (2005)CrossRefGoogle Scholar
  16. 16.
    Terçariol, C.A.S., Martinez, A.S.: Analytical results for the statistical distribution related to memoryless deterministic tourist walk: Dimensionality effect and mean field models. Phys. Rev. E 72, 021103 (2005)CrossRefGoogle Scholar
  17. 17.
    Risau-Gusman, S., Martinez, A.S., Kinouchi, O.: Escaping from cycles through a glass transition. Phys. Rev. E 68, Art. No. 016104 (2003)Google Scholar
  18. 18.
    Martinez, A.S., Kinouchi, O., Risau-Gusman, S.: Exploratory behavior, trap models and glass transitions. Phys. Rev. E 69, Art. No. 017101 (2004)Google Scholar
  19. 19.
    Brodatz, P.: A Photographic Album for Arts and Design, vol. 1. Dover Publishing Co., Toronto (1966)Google Scholar
  20. 20.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2005) Google Scholar
  21. 21.
    Webb, A.: Statistical Pattern Recognition, vol. 1. Newnes (1999)Google Scholar
  22. 22.
    Duda, R.O., Hart, P.E.: Pattern Classification. John Wiley and Sons, Chichester (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mônica G. Campiteli
    • 1
  • Alexandre S. Martinez
    • 1
  • Odemir M. Bruno
    • 2
  1. 1.Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP)Universidade de São Paulo (USP)Ribeirão PretoBrazil
  2. 2.Instituto de Ciências Matemáticas e de Computação (ICMC)Universidade de São Paulo (USP)São CarlosBrazil

Personalised recommendations