Skip to main content

Color Image Segmentation Through Unsupervised Gaussian Mixture Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4140))

Abstract

In this paper we introduce a novelty EM based algorithm for Gaussian Mixture Models with an unknown number of components. Although the EM (Expectation-Maximization) algorithm yields the maximum likelihood solution it has many problems: (i) it requires a careful initialization of the parameters; (ii) the optimal number of kernels in the mixture may be unknown beforehand. We propose a criterion based on the entropy of the pdf (probability density function) associated to each kernel to measure the quality of a given mixture model, and a modification of the classical EM algorithm to find the optimal number of kernels in the mixture. We apply our algorithm to the unsupervised color image segmentation problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arandjelovic, O., Cipolla, R.: Incremental learning of temporary-coherent Gaussian mixture models. In: British Machine Vision Conference. British Machine Vision Association, BMVA (2005)

    Google Scholar 

  2. Beirlant, E., Dudewicz, E., Gyorfi, L., Van der Meulen, E.: Nonparametric entropy estimation. International Journal on Mathematical and Statistical Sciences 6(1), 17–39 (1996)

    Google Scholar 

  3. Clark, E., Quinn, A.: A data-driven bayesian sampling scheme for unsupervised image segmentation. In: Proceedings of ICASSP 1999 (1999)

    Google Scholar 

  4. Cover, T., Thomas, J.: Elements of Information Theory. J. Wiley and Sons, Chichester (1991)

    Book  MATH  Google Scholar 

  5. Dellaportas, P., Papageorgiou, I.: Multivariate mixtures of normals with unknown number of components. Statistics and Computing (to appear)

    Google Scholar 

  6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood estimation from incomplete data via the em algorithm. Journal of The Royal Statistical Society B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Figueiredo, M.A.T., Jain, A.K.: Unsupervised selection and estimation of finite mixture models. In: Proceedings of the International Conference on Pattern Recognition, ICPR 2000, Barcelona (2000)

    Google Scholar 

  8. Figueiredo, M.A.T., Leitao, J.M.N., Jain, A.K.: On fitting mixture models. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 54–69. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Hornegger, J., Niemann, H.: A novel probabilistic model for object recognition and pose estimation. Pattern Recognition Artif. Intell. 15(2), 241–253 (2001)

    Article  Google Scholar 

  10. Li, S.Z.: Markov random field modeling in computer vision. Springer, London (1995)

    Google Scholar 

  11. Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57(3), 519–530 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Parzen, E.: On estimation of a probability density function and mode. Annals of Mathematical Statistics 33(1), 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  13. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the em algorithm. SIAM Review 26(2), 195–239 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Richardson, S., Green, P.J.: On bayesian analysis of mixtures with unknown number of components (with discussion). Journal of the Royal Statistical Society B 59(1), 731–792 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rissanen, J.: Stochastic complexity in statistical inquiry. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  16. Shannon, C.: A mathematical theory of comunication. The Bell System Technical Journal 27(1), 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  17. Tu, Z., Zhu, S.C., Shum, H.Y.: Image segmentation by data driven markov chain montecarlo. In: Proceedings of ICCV 2001 (2001)

    Google Scholar 

  18. Tu, Z.W., Zhu, S.C.: Image segmentation by datadriven markov chain monte carlo. IEEE Trans. Pattern Anal. Mach. Intell 24(1), 657–673 (2002)

    Google Scholar 

  19. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E.: Smem algorithm for mixture models. Neural Computation 12(1), 2109–2128 (2000)

    Article  Google Scholar 

  20. Viola, P., Schraudolph, N.N., Sejnowski, T.J.: Empirical entropy manipulation for real-world problems. Adv. in Neural Infor. Proces. Systems 8(1) (1996)

    Google Scholar 

  21. Viola, P., Wells-III, W.M.: Alignment by maximization of mutual information. In: 5th Intern. Conf. on Computer Vision. IEEE, Los Alamitos (1995)

    Google Scholar 

  22. Vlassis, N., Likas, A.: A kurtosis-based dynamic approach to gaussian mixture modeling. IEEE Trans. Systems, Man, and Cybernetics 29(4), 393–399 (1999)

    Article  Google Scholar 

  23. Vlassis, N., Likas, A.: A greedy em algorithm for gaussian mixture learning. Neural Processing Letters 15(1), 77–87 (2002)

    Article  MATH  Google Scholar 

  24. Vlassis, N., Likas, A., Krose, B.: A multivariate kurtosis-based dynamic approach to gaussian mixture modeling. Inteligent Autonomous Systems Tech. Report (2000)

    Google Scholar 

  25. Zhang, Z., Chan, K.L., Wu, Y., Chen, C.: Learning a multivariate gaussian mixture models with the reversible jump mcmc algorithm. Statistics and Computing 14(1), 343–355 (2004)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Z., Chen, C., Sun, J., Chan, K.L.: Em algorithms for gaussian mixtures with split-and-merge operation. Pattern Recognition 36(1), 1973–1983 (2003)

    Article  MATH  Google Scholar 

  27. Zhu, S.C., Zhang, R., Tu, Z.: Integrating bottom-up for object recognition by data driven markov chain montecarlo. In: CVPR. IEEE, Los Alamitos (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peñalver, A., Escolano, F., Sáez, J.M. (2006). Color Image Segmentation Through Unsupervised Gaussian Mixture Models. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds) Advances in Artificial Intelligence - IBERAMIA-SBIA 2006. IBERAMIA SBIA 2006 2006. Lecture Notes in Computer Science(), vol 4140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874850_19

Download citation

  • DOI: https://doi.org/10.1007/11874850_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45462-5

  • Online ISBN: 978-3-540-45464-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics