Advertisement

Satisfiability and Finite Model Property for the Alternating-Time μ-Calculus

  • Sven Schewe
  • Bernd Finkbeiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)

Abstract

This paper presents a decision procedure for the alternating-time μ-calculus. The algorithm is based on a representation of alternating-time formulas as automata over concurrent game structures. We show that language emptiness of these automata can be checked in exponential time. The complexity of our construction meets the known lower bounds for deciding the satisfiability of the classic μ-calculus. It follows that the satisfiability problem is EXPTIME-complete for the alternating-time μ-calculus.

Keywords

Atomic Proposition Deterministic Automaton Nondeterministic Automaton Parity Game Finite Model Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: Mocha: Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. Logic, Methodology and Philosophy of Science, 1–11 (1962)Google Scholar
  4. 4.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dynamic programs for omega-regular objectives. In: Proc. LICS, pp. 279–290. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  5. 5.
    Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Proc. FOCS, pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  6. 6.
    Even, S., Yacobi, Y.: Relations among public key signature systems. Technical Report 175, Technion, Haifa, Israel (March 1980)Google Scholar
  7. 7.
    Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS, pp. 321–330. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  8. 8.
    Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Kozen, D., Parikh, R.J.: A decision procedure for the propositional μ-calculus. In: Proc. Logic of Programs, pp. 313–325. Springer, Heidelberg (1983)Google Scholar
  10. 10.
    Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange protocols. Journal of Computer Security 11(3), 399–430 (2003)Google Scholar
  11. 11.
    Kupferman, O., Vardi, M.Y.: μ-calculus synthesis. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 497–507. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Information and Control 9(5), 521–530 (1966)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic automata: new results and new proofs of the theorems of Rabin, McNaughton and Safra. Theor. Comput. Sci. 141(1-2), 69–107 (1995)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. Regional Conference Series in Mathematics, vol. 13. Amer. Math. Soc. (1972)Google Scholar
  16. 16.
    Safra, S.: On the complexity of the ω-automata. In: Proc. FoCS, pp. 319–327. IEEE Computer Society Press, Los Alamitos (1988)Google Scholar
  17. 17.
    van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proc. LICS, pp. 208–217. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  18. 18.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Journal of Information and Computation 115(1), 1–37 (1994)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: Atl satisfiability is indeed exptime-complete. Journal of Logic and Computation (to appear, 2006)Google Scholar
  20. 20.
    Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull. Soc. Math. Belg. 8(2) (May 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sven Schewe
    • 1
  • Bernd Finkbeiner
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations