Decidable Theories of the Ordering of Natural Numbers with Unary Predicates

  • Alexander Rabinovich
  • Wolfgang Thomas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


Expansions of the natural number ordering by unary predicates are studied, using logics which in expressive power are located between first-order and monadic second-order logic. Building on the model-theoretic composition method of Shelah, we give two characterizations of the decidable theories of this form, in terms of effectiveness conditions on two types of “homogeneous sets”. We discuss the significance of these characterizations, show that the first-order theory of successor with extra predicates is not covered by this approach, and indicate how analogous results are obtained in the semigroup theoretic and the automata theoretic framework.


Decidable Theory Expressive Power Unary Predicate Composition Theorem Characteristic Sentence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E., et al. (eds.) Proc. International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press (1960)Google Scholar
  2. 2.
    Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of successor. J. Symb. Logic 34, 166–170 (1969)MATHCrossRefGoogle Scholar
  3. 3.
    Carton, O., Thomas, W.: The Monadic Theory of Morphic Infinite Words and Generalizations. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 275–284. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Carton, O., Thomas, W.: The Monadic Theory of Morphic Infinite Words and Generalizations. Inf. Comput. 176(1), 51–65 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Elgot, C., Rabin, M.O.: Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized) Successor. J. Symb. Logic 31(2), 169–181 (1966)MATHCrossRefGoogle Scholar
  6. 6.
    Gurevich, Y.: Monadic second order theories. In: Barwise, J., Feferman, S. (eds.) Model Theoretic Logics, pp. 479–506. Springer, Heidelberg (1986)Google Scholar
  7. 7.
    Lifsches, S., Shelah, S.: Uniformization and Skolem Functions in the Class of Trees. J. Symb. Logic 63, 103–127 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rabinovich, A.: On decidability of monadic logic of order over the naturals extended by monadic predicates (manuscript, 2005) (submitted)Google Scholar
  9. 9.
    Robinson, R.M.: Restricted Set-Theoretical Definitions in Arithmetic. Proceedings of the American Mathematical Society 9(2), 238–242 (1958)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rogers, H.R.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)MATHGoogle Scholar
  11. 11.
    Semenov, A.: Logical theories of one-place functions on the set of natural numbers. Mathematics of the USSR - Izvestia 22, 587–618 (1984)MATHCrossRefGoogle Scholar
  12. 12.
    Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)CrossRefGoogle Scholar
  13. 13.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)Google Scholar
  14. 14.
    Siefkes, D.: Decidable extensions of monadic second-order successor arithmetic. In: Dörr, J., Hotz, G. (eds.) Automatentheorie und Formale Sprachen, pp. 441–472. BI-Wissenschaftsverlag, Mannheim (1970)Google Scholar
  15. 15.
    Thomas, W.: Das Entscheidungsproblem für einige Erweiterungen der Nachfolger-Arithmetik. Ph. D. Thesis Albert-Ludwigs Universität, Freiburg (1975)Google Scholar
  16. 16.
    Thomas, W.: The theory of successor with an extra predicate. Math. Ann. 237, 121–132 (1978)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Thomas, W.: Automata on infinite objects. In: Leeuwen, J.v. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 135–191. Elsevier, Amsterdam (1990)Google Scholar
  18. 18.
    Thomas, W.: Ehrenfeucht Games, the composition method, and the monadic theory of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Trakhtenbrot, B.A.: Finite automata and the logic of one-place predicates (Russian version 1961). AMS Transl. 59, 23–55 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander Rabinovich
    • 1
  • Wolfgang Thomas
    • 2
  1. 1.Department of Computer ScienceTel Aviv University 
  2. 2.Lehrstuhl Informatik 7RWTH AachenAachenGermany

Personalised recommendations