Acyclicity and Coherence in Multiplicative Exponential Linear Logic

  • Michele Pagani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


We give a geometric condition that characterizes MELL proof structures whose interpretation is a clique in non-uniform coherent spaces: visible acyclicity.

We define the visible paths and we prove that the proof structures which have no visible cycles are exactly those whose interpretation is a clique. It turns out that visible acyclicity has also nice computational properties, especially it is stable under cut reduction.


Linear Logic Sequent Calculus Feasible Path Denotational Semantic Simple Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical Logic 28, 181–203 (1989)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fleury, A., Retoré, C.: The mix rule. Mathematical Structures in Computer Science 4(2), 173–185 (1994)CrossRefGoogle Scholar
  3. 3.
    Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics: the exponentials. Annals of Pure and Applied Logic 109, 205–241 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Retoré, C.: A semantic characterization of the correctness of a proof net. Mathematical Structures in Computer Science 7(5), 445–452 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Pagani, M.: Proofs, Denotational Semantics and Observational Equivalences in Multiplicative Linear Logic. Mathematical Structures in Computer Science (to appear)Google Scholar
  7. 7.
    de Falco, L.T.: Réseaux, cohérence et expériences obsessionnelles. Thèse de doctorat, Université Paris VII (2000)Google Scholar
  8. 8.
    Laurent, O.: Étude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michele Pagani
    • 1
  1. 1.Dipartimento di FilosofiaUniversità Roma TreRoma

Personalised recommendations