On the Expressive Power of Graph Logic

  • Jerzy Marcinkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


Graph Logic, a query language being a sublogic of Monadic Second Order Logic is studied in [CGG02]. In the paper [DGG04] the expressiveness power of Graph Logic is examined, and it is shown, for many MSO properties, how to express them in Graph Logic. But despite of the positive examples, it is conjectured there that Graph Logic is strictly less expressive than MSO Logic. Here we give a proof of this conjecture.


Order Variable Query Language Order Logic Winning Strategy Edge Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AFS98]
    Ajtai, M., Fagin, R., Stockmeyer, L.: The Closure of Monadic \(\cal NP\). In: Proc. of 13th STOC, pp. 309–318 (1998)Google Scholar
  2. [CGG02]
    Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. [C90]
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. 2, pp. 194–242. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  4. [DGG04]
    Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and Complexity of Graph Logic, Imperial College, Department of Computing Technical Report 2004/3, Information and Computation (to appear)Google Scholar
  5. [EF95]
    Ebinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)Google Scholar
  6. [GS03]
    Grohe, M., Schweikardt, N.: Comparing the succinctness of monadic query languages over finite trees. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 226–240. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [JM01]
    Janin, D., Marcinkowski, J.: A Toolkit for First Order Extensions of Monadic Games. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 353–364. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. [KL04]
    Keisler, H.J., Lotfallah, W.B.: First order quantifiers in monadic second order logic. J. Symbolic Logic 69(1), 118–136 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. [M99]
    Marcinkowski, J.: Directed Reachability: From Ajtai-Fagin to Ehrenfeucht-Fraisse games. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 338–349. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jerzy Marcinkowski
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations