Universality Results for Models in Locally Boolean Domains

  • Tobias Löw
  • Thomas Streicher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


In [8] J. Laird has shown that an infinitary sequential extension of PCF has a fully abstract model in his category of locally boolean domains (introduced in [10] ). In this paper we introduce an extension SPCF  ∞  of his language by recursive types and show that it is universal for its model in locally boolean domains.

Finally we consider an infinitary target language CPS  ∞  for (the) CPS translation (of[18] ) and show that it is universal for a model in locally boolean domains which is constructed like Dana Scott’s D  ∞  where \(D = \{\bot,\top\}\).


Normal Form Abstract Model Inverse Limit Sequential Algorithm Error Element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2), 409–470 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amadio, R.M., Curien, P.-L.: Domains and lambda-calculi. Cambridge University Press, New York (1998)MATHGoogle Scholar
  3. 3.
    Asperti, A.: Stability and computability in coherent domains. Inf. Comput. 86(2), 115–139 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barendregt, H.P.: The Lambda Calculus - its syntax and semantics. North-Holland, Amsterdam (1981) (1984)MATHGoogle Scholar
  5. 5.
    Cartwright, R., Curien, P.-L., Felleisen, M.: Fully abstract models of observably sequential languages. Information and Computation 111(2), 297–401 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeterminism. In: LICS, pp. 422–430 (1999)Google Scholar
  7. 7.
    Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I. models, observables and the full abstraction problem, ii. dialogue games and innocent strategies, iii. a fully abstract and universal game model. Information and Computation 163, 285–408 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Laird, J.: Bistable biorders: a sequential domain theory (submitted, 2005)Google Scholar
  9. 9.
    Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1998)Google Scholar
  10. 10.
    Laird, J.: Locally boolean domains. Theoretical Computer Science 342, 132–148 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Loader, R.: Finitary PCF is not decidable. Theor. Comput. Sci. 266(1-2), 341–364 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Longley, J.: The sequentially realizable functionals. Ann. Pure Appl. Logic 117(1-3), 1–93 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Löw, T.: Locally Boolean Domains and Curien-Lamarche Games. PhD thesis, Technical University of Darmstadt (in prepration, 2006), preliminary version available from: http://www.mathematik.tu-darmstadt.de/~loew/lbdclg.pdf
  14. 14.
    Maurel, F.: Un cadre quantitatif pour la Ludique. PhD thesis, Université Paris 7, Paris (2004)Google Scholar
  15. 15.
    O’Hearn, P.W., Riecke, J.G.: Kripke logical relations and PCF. Information and Computation 120(1), 107–116 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pitts, A.M.: Relational properties of domains. Information and Computation 127(2), 66–90 (1996)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Plotkin, G.D.: Lectures on predomains and partial functions. Course notes, Center for the Study of Language and Information, Stanford (1985)Google Scholar
  18. 18.
    Reus, B., Streicher, T.: Classical logic, continuation semantics and abstract machines. J. Funct. Prog. 8(6), 543–572 (1998)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tobias Löw
    • 1
  • Thomas Streicher
    • 1
  1. 1.TU DarmstadtDarmstadt

Personalised recommendations