Automata and Logics for Words and Trees over an Infinite Alphabet

  • Luc Segoufin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


In a data word or a data tree each position carries a label from a finite alphabet and a data value from some infinite domain. These models have been considered in the realm of semistructured data, timed automata and extended temporal logics.

This paper survey several know results on automata and logics manipulating data words and data trees, the focus being on their relative expressive power and decidability.


Temporal Logic Data Tree Expressive Power Tree Automaton Data Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V.: XML with Data Values: Typechecking Revisited. Journal of Computer and System Sciences 66(4), 688–727 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arenas, M., Fan, W., Libkin, L.: Consistency of XML specifications. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 15–41. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Autebert, J.-M., Beauquier, J., Boasson, L.: Langages des alphabets infinis. Discrete Applied Mathematics 2, 1–20 (1980)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs. In: Proc. ACM Symp. on Principles of Database Systems, pp. 25–36 (2005)Google Scholar
  5. 5.
    Björklund, H., Schwentick, T.: Personnal communicationGoogle Scholar
  6. 6.
    Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two- Variable Logic on Data Trees and XML Reasoning. In: Proc. ACM Symp. on Principles of Database Systems (2006)Google Scholar
  7. 7.
    Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two- Variable Logic on Words with Data. In: Proc. IEEE Conf. on Logic in Computer Science (2006)Google Scholar
  8. 8.
    Bouajjani, A., Habermehl, P., Mayr, R.: Automatic Verification of Recursive Procedures with one Integer Parameter. Theoretical Computer Science 295 (2003)Google Scholar
  9. 9.
    Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Inf. Comput. 182(2), 137–162 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Reasoning about keys for XML. Inf. Syst. 28(8), 1037–1063 (2003)CrossRefGoogle Scholar
  11. 11.
    Cheng, E., Kaminski, M.: Context-Free Languages over Infinite Alphabets. Acta Inf. 35(3), 245–267 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    David, C.: Mots et données infinis. Master’s thesis, Université Paris 7, LIAFA (2004)Google Scholar
  13. 13.
    de Groote, P., Guillaume, B., Salvati, S.: Vector Addition Tree Automata. In: Proc. IEEE Conf. on Logic in Computer Science, pp. 64–73 (2004)Google Scholar
  14. 14.
    Demri, S., Lazić, R.: LTL with the Freeze Quantifer and Register Automata. In: Proc. IEEE Conf. on Logic in Computer Science (2006)Google Scholar
  15. 15.
    Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in Constraint LTL. In: TIMES (2005)Google Scholar
  16. 16.
    Etessami, K., Vardi, M., Wilke, T.: First-Order Logic with Two Variables and Unary Temporal Logic. Inf. Comput. 179(2), 279–295 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Francez, N., Kaminski, M.: An algebraic characterization of deterministic regular languages over infinite alphabets. Theoretical Computer Science 306(1-3), 155–175 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Geerts, F., Fan, W.: Satisfiability of XPath Queries with Sibling Axes. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 122–137. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Idt, J.: Automates a pile sur des alphabets infinis. In: Fontet, M., Mehlhorn, K. (eds.) STACS 1984. LNCS, vol. 166. Springer, Heidelberg (1984)Google Scholar
  20. 20.
    Kaminski, M., Francez, N.: Finite memory automata. Theoretical Computer Science 134(2), 329–363 (1994)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kaminski, M., Tan, T.: Regular Expressions for Languages over Infinite Alphabets. Fundam. Inform. 69(3), 301–318 (2006)MATHMathSciNetGoogle Scholar
  22. 22.
    Kaminski, M., Tan, T.: Tree Automata over Infinite Alphabets. In: H. Ibarra, O., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094. Springer, Heidelberg (2006)Google Scholar
  23. 23.
    Kosaraju, S.: Decidability of reachability in vector addition systems. In: Proc. ACM SIGACT Symp. on the Theory of Computing, pp. 267–281 (1984)Google Scholar
  24. 24.
    Lipton, R.: The reachability problem requires exponential space. Technical report, Dep. of Comp. Sci., Research report 62, Yale University (1976)Google Scholar
  25. 25.
    Marx, M.: First order paths in ordered trees. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 114–128. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM J. of Comp. 13, 441–459 (1984)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Neven, F., Schwentick, T.: XPath Containment in the Presence of Disjunction, DTDs, and Variables. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 312–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Logic 15(3), 403–435 (2004)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Otto, F.: Classes of regular and context-free languages over countably infinite alphabet. Discrete and Apllied Mathematics 12, 41–56 (1985)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theoretical Computer Science 231, 297–308 (2000)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Shemesh, Y., Francez, N.: Finite-State Unification Automata and Relational Languages. Inf. Comput. 114(2), 192–213 (1994)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tal, A.: Decidability of inclusion for unification based automata. Master’s thesis, Department of Computer Science, Technion - Israel Institute of Technology (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luc Segoufin
    • 1
  1. 1.INRIA and Université Paris 11 

Personalised recommendations