Skip to main content

Solving Games Without Determinization

  • Conference paper
Computer Science Logic (CSL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4207))

Included in the following conference series:

Abstract

The synthesis of reactive systems requires the solution of two-player games on graphs with ω-regular objectives. When the objective is specified by a linear temporal logic formula or nondeterministic Büchi automaton, then previous algorithms for solving the game require the construction of an equivalent deterministic automaton. However, determinization for automata on infinite words is extremely complicated, and current implementations fail to produce deterministic automata even for relatively small inputs. We show how to construct, from a given nondeterministic Büchi automaton, an equivalent nondeterministic parity automaton \(\ensuremath {\cal P}\) that is good for solving games with objective \(\ensuremath {\cal P}\). The main insight is that a nondeterministic automaton is good for solving games if it fairly simulates the equivalent deterministic automaton. In this way, we omit the determinization step in game solving and reactive synthesis. The fact that our automata are nondeterministic makes them surprisingly simple, amenable to symbolic implementation, and allows an incremental search for winning strategies.

This research was supported in part by the Swiss National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of büchi automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 262–272. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Büchi, J.R., Landweber, L.H.G.: Solving sequential conditions by finite-state strategies. Trans. AMS 138, 295–311 (1969)

    Article  Google Scholar 

  3. Emerson, E.A., Jutla, C.: Tree automata, μ-calculus and determinacy. In: FOCS, pp. 368–377. IEEE, Los Alamitos (1991)

    Google Scholar 

  4. Emerson, E.A., Jutla, C., Sistla, A.P.: On model checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)

    Google Scholar 

  5. Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 273–287. Springer, Heidelberg (1997)

    Google Scholar 

  6. Harding, A., Ryan, M., Schobbens, P.Y.: A new algorithm for strategy synthesis in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 477–492. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Jurdzinski, M., Voge, J.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Klein, J., Baier, C.: Experiments with deterministic ?-automata for formulas of linear temporal logic. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 199–212. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Kesten, Y., Piterman, N., Pnueli, A.: Bridging the gap between fair simulation and trace containment. I&C 200, 35–61 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS. IEEE, Los Alamitos (2005)

    Google Scholar 

  13. Landweber, L.H.: Decision problems for ω–automata. MST 3, 376–384 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  14. Löding, C.: Methods for the transformation of ω-automata: Complexity and connection to second-order logic. Master Thesis, University of Kiel (1998)

    Google Scholar 

  15. Martin, D.A.: Borel determinacy. Annals of Mathematics 65, 363–371 (1975)

    Article  Google Scholar 

  16. McMillan, K.L.: Symbolic Model Checking. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  17. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Michel, M.: Complementation is more difficult with automata on infinite words. In: CNET, Paris (1988)

    Google Scholar 

  19. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: LICS. IEEE, Los Alamitos (to appear, 2006)

    Google Scholar 

  20. Madhusudan, P., Alur, R., La Torre, S.: Playing games with boxes and diamonds. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 127–141. Springer, Heidelberg (2003)

    Google Scholar 

  21. Rabin, M.O.: Automata on infinite objects and Church’s problem. American Mathematical Society (1972)

    Google Scholar 

  22. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Trans. Control Theory 77, 81–98 (1989)

    Google Scholar 

  23. Safra, S.: On the complexity of ω-automata. In: FOCS. IEEE, Los Alamitos (1988)

    Google Scholar 

  24. Tasiran, S., Hojati, R., Brayton, R.K.: Language containment using non-deterministic ω-automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987. Springer, Heidelberg (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henzinger, T.A., Piterman, N. (2006). Solving Games Without Determinization. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_26

Download citation

  • DOI: https://doi.org/10.1007/11874683_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45458-8

  • Online ISBN: 978-3-540-45459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics