Solving Games Without Determinization

  • Thomas A. Henzinger
  • Nir Piterman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


The synthesis of reactive systems requires the solution of two-player games on graphs with ω-regular objectives. When the objective is specified by a linear temporal logic formula or nondeterministic Büchi automaton, then previous algorithms for solving the game require the construction of an equivalent deterministic automaton. However, determinization for automata on infinite words is extremely complicated, and current implementations fail to produce deterministic automata even for relatively small inputs. We show how to construct, from a given nondeterministic Büchi automaton, an equivalent nondeterministic parity automaton \(\ensuremath {\cal P}\) that is good for solving games with objective \(\ensuremath {\cal P}\). The main insight is that a nondeterministic automaton is good for solving games if it fairly simulates the equivalent deterministic automaton. In this way, we omit the determinization step in game solving and reactive synthesis. The fact that our automata are nondeterministic makes them surprisingly simple, amenable to symbolic implementation, and allows an incremental search for winning strategies.


Linear Temporal Logic Winning Strategy Acceptance Condition Tree Automaton Game Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ATW05]
    Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of büchi automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 262–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. [BL69]
    Büchi, J.R., Landweber, L.H.G.: Solving sequential conditions by finite-state strategies. Trans. AMS 138, 295–311 (1969)CrossRefGoogle Scholar
  3. [EJ91]
    Emerson, E.A., Jutla, C.: Tree automata, μ-calculus and determinacy. In: FOCS, pp. 368–377. IEEE, Los Alamitos (1991)Google Scholar
  4. [EJS93]
    Emerson, E.A., Jutla, C., Sistla, A.P.: On model checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)Google Scholar
  5. [HKR97]
    Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 273–287. Springer, Heidelberg (1997)Google Scholar
  6. [HRS05]
    Harding, A., Ryan, M., Schobbens, P.Y.: A new algorithm for strategy synthesis in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 477–492. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [JGB05]
    Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. [Jur00]
    Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. [JV00]
    Jurdzinski, M., Voge, J.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. [KB05]
    Klein, J., Baier, C.: Experiments with deterministic ?-automata for formulas of linear temporal logic. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 199–212. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. [KPP05]
    Kesten, Y., Piterman, N., Pnueli, A.: Bridging the gap between fair simulation and trace containment. I&C 200, 35–61 (2005)MATHMathSciNetGoogle Scholar
  12. [KV05]
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS. IEEE, Los Alamitos (2005)Google Scholar
  13. [Lan69]
    Landweber, L.H.: Decision problems for ω–automata. MST 3, 376–384 (1969)MATHMathSciNetCrossRefGoogle Scholar
  14. [Löd98]
    Löding, C.: Methods for the transformation of ω-automata: Complexity and connection to second-order logic. Master Thesis, University of Kiel (1998)Google Scholar
  15. [Mar75]
    Martin, D.A.: Borel determinacy. Annals of Mathematics 65, 363–371 (1975)CrossRefGoogle Scholar
  16. [McM93]
    McMillan, K.L.: Symbolic Model Checking. Kluwer, Dordrecht (1993)MATHGoogle Scholar
  17. [MH84]
    Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)MATHCrossRefMathSciNetGoogle Scholar
  18. [Mic88]
    Michel, M.: Complementation is more difficult with automata on infinite words. In: CNET, Paris (1988)Google Scholar
  19. [Pit06]
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: LICS. IEEE, Los Alamitos (to appear, 2006)Google Scholar
  20. [RA03]
    Madhusudan, P., Alur, R., La Torre, S.: Playing games with boxes and diamonds. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 127–141. Springer, Heidelberg (2003)Google Scholar
  21. [Rab72]
    Rabin, M.O.: Automata on infinite objects and Church’s problem. American Mathematical Society (1972)Google Scholar
  22. [RW89]
    Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Trans. Control Theory 77, 81–98 (1989)Google Scholar
  23. [Saf88]
    Safra, S.: On the complexity of ω-automata. In: FOCS. IEEE, Los Alamitos (1988)Google Scholar
  24. [THB95]
    Tasiran, S., Hojati, R., Brayton, R.K.: Language containment using non-deterministic ω-automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas A. Henzinger
    • 1
  • Nir Piterman
    • 1
  1. 1.EPFLSwitzerland

Personalised recommendations