Advertisement

Jump from Parallel to Sequential Proofs: Multiplicatives

  • Paolo Di Giamberardino
  • Claudia Faggian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)

Abstract

We introduce a new class of multiplicative proof nets, J-proof nets, which are a typed version of Faggian and Maurel’s multiplicative L-nets. In J-proof nets, we can characterize nets with different degrees of sequentiality, by gradual insertion of sequentiality constraints. As a byproduct, we obtain a simple proof of the sequentialisation theorem.

Keywords

Linear Logic Sequent Calculus Switching Cycle Negative Link Terminal Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.-M., Maieli, R.: Focusing and Proof nets in Linear and Non-Commutative Logic. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Andreoli, J.-M.: Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2(3) (1992)Google Scholar
  3. 3.
    Andreoli, J.-M.: Focussing Proof-Net Construction as a Middleware Paradigm. In: Voronkov, A. (ed.) CADE 2002. LNCS, vol. 2392. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Banach, R.: Sequent reconstruction in MLL - A sweepline proof. Annals of pure and applied logic 73, 277–295 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Curien, P.-L., Faggian, C.: An approach to innocent strategies as graphs. Journal (submitted)Google Scholar
  6. 6.
    Curien, P.-L., Faggian, C.: L-Nets, Strategies and Proof-Nets. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 167–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Danos, V.: La Logique Linéaire appliquée létude de de divers processus de normalisation (principalement du λ-calcul). PhD thesis, Université Paris 7 (1990)Google Scholar
  8. 8.
    Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In: Proc. of LICS 2005 (Logic in Computer Science). IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  9. 9.
    Girard, J.-Y.: Le Point Aveugle, Tome I and II. In: Hermann (ed.) Cours de théorie de la démonstration, Roma Tre (Octobre-Décembre 2004), available at: http://logica.uniroma3.it/uif/corso
  10. 10.
    Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Girard, J.-Y.: Quantifiers in Linear Logic II. In: Nuovi problemi della Logica e della Filosofia della scienza (1991)Google Scholar
  12. 12.
    Girard, J.-Y.: On the meaning of logical rules II: multiplicative/additive case. In: Foundation of Secure Computation. NATO series F 175, pp. 183–212. IOS Press, Amsterdam (2000)Google Scholar
  13. 13.
    Girard, J.-Y.: Locus Solum. Mathematical Structures in Computer Science 11, 301–506 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Laurent, O.: Polarized Games. Annals of Pure and Applied Logic 130(1-3), 79–123 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Di Giamberardino
    • 1
  • Claudia Faggian
    • 2
  1. 1.Dip. di Filosofia, Università Roma Tre – Institut de Mathématiques de Luminy 
  2. 2.Dip. di Matematica, Università di Padova – PPS

Personalised recommendations