Reasoning About States of Probabilistic Sequential Programs

  • R. Chadha
  • P. Mateus
  • A. Sernadas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


A complete and decidable propositional logic for reasoning about states of probabilistic sequential programs is presented. The state logic is then used to obtain a sound Hoare-style calculus for basic probabilistic sequential programs. The Hoare calculus presented herein is the first probabilistic Hoare calculus with a complete and decidable state logic that has truth-functional propositional (not arithmetical) connectives. The models of the state logic are obtained exogenously by attaching sub-probability measures to valuations over memory cells. In order to achieve complete and recursive axiomatization of the state logic, the probabilities are taken in arbitrary real closed fields.


Inference Rule State Logic Dynamic Logic Denotational Semantic State Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of probability. Information and Computation 112(1), 1–36 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In: FOCS 2000: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p. 547. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  3. 3.
    Basu, S., Pollack, R., Marie-Françoise, R.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)MATHGoogle Scholar
  4. 4.
    Chadha, R., Mateus, P., Sernadas, A.: Reasoning about quantum imperative programs. Electronic Notes in Theoretical Computer Science 158, 19–40 (2006) (Invited talk at the Twenty-Second Conference on the Mathematical Foundations of Programming Semantics)CrossRefGoogle Scholar
  5. 5.
    Chadha, R., Mateus, P., Sernadas, A., Sernadas, C.: Extending classical logic for reasoning about quantum systems. CLC, Department of Mathematics, Instituto Superior Técnico (preprint, 2005) (Invited submission to the Handbook of Quantum Logic)Google Scholar
  6. 6.
    den Hartog, J.I., de Vink, E.P.: Verifying probabilistic programs using a hoare like logic. International Journal of Foundations of Computer Science 13(3), 315–340 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87(1-2), 78–128 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feldman, Y.A.: A decidable propositional dynamic logic with explicit probabilities. Information and Control 63(1/2), 11–38 (1984)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. Journal of Computer and System Sciences 28, 193–215 (1984)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1995)CrossRefGoogle Scholar
  11. 11.
    Hoare, C.: An axiomatic basis for computer programming. Communications of the ACM 12, 576–583 (1969)MATHCrossRefGoogle Scholar
  12. 12.
    Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)MATHCrossRefGoogle Scholar
  13. 13.
    Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: 12th Annual IEEE Symposium on Logic in Computer Science (LICS 1997), pp. 111–122 (1997)Google Scholar
  14. 14.
    Jones, C.: Probabilistic Non-determinism. PhD thesis, U. Edinburgh (1990)Google Scholar
  15. 15.
    Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science, pp. 186–195. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  16. 16.
    Kozen, D.: Semantics of probabilistic programs. Journal of Computer System Science 22, 328–350 (1981)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kozen, D.: A probabilistic PDL. Journal of Computer System Science 30, 162–178 (1985)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Makowsky, J.A., Tiomkin, M.L.: Probabilistic propositional dynamic logic (manuscript, 1980)Google Scholar
  19. 19.
    Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum propositional logic. Information and Computation (to appear)Google Scholar
  20. 20.
    Mateus, P., Sernadas, A., Sernadas, C.: Exogenous semantics approach to enriching logics. In: Essays on the Foundations of Mathematics and Logic. Advanced Studies in Mathematics and Logic, vol. 1, pp. 165–194. Polimetrica (2005)Google Scholar
  21. 21.
    Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM Transactions on Programming Languages and Systems 18(3), 325–353 (1996)CrossRefGoogle Scholar
  22. 22.
    Moshier, M.A., Jung, A.: A logic for probabilities in semantics. In: Bradfield, J.C. (ed.) CSL 2002. LNCS, vol. 2471, pp. 216–231. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Narasimha, M., Cleaveland, W.R., Iyer, P.: Probabilistic temporal logics via the modal mu-calculus. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 288–305. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Nilsson, N.J.: Probabilistic logic revisited. Artificial Intelligence 59(1-2), 39–42 (1993)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Parikh, R., Mahoney, A.: A theory of probabilistic programs. In: Proceedings of the Carnegie Mellon Workshop on Logic of Programs. LNCS, vol. 64, pp. 396–402. Springer, Heidelberg (1983)Google Scholar
  27. 27.
    Ramshaw, L.H.: Formalizing the analysis of algorithms. PhD thesis, Stanford University (1979)Google Scholar
  28. 28.
    Reif, J.H.: Logics for probabilistic programming (extended abstract). In: STOC 1980: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 8–13 (1980)Google Scholar
  29. 29.
    Tix, R., Keimel, K., Plotkin, G.D.: Semantic domains for combining probability and non-determinism. Electronic Notes in Theoretical Computer Science 129, 1–104 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Chadha
    • 1
  • P. Mateus
    • 1
  • A. Sernadas
    • 1
  1. 1.SQIG – IT and ISTPortugal

Personalised recommendations