Advertisement

Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic

  • Vincent Atassi
  • Patrick Baillot
  • Kazushige Terui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)

Abstract

In a previous work we introduced Dual Light Affine Logic (DLAL) ([BT04]) as a variant of Light Linear Logic suitable for guaranteeing complexity properties on lambda-calculus terms: all typable terms can be evaluated in polynomial time and all Ptime functions can be represented. In the present work we address the problem of typing lambda-terms in second-order DLAL. For that we give a procedure which, starting with a term typed in system F, finds all possible ways to decorate it into a DLAL typed term. We show that our procedure can be run in time polynomial in the size of the original Church typed system F term.

Keywords

Polynomial Time Linear Logic Type Inference Linear Type Integer Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABT06]
    Atassi, V., Baillot, P., Terui, K.: Verification of Ptime reducibility for system F terms via Dual Light Affine Logic. Technical Report HAL ccsd-00021834 (July 2006)Google Scholar
  2. [Ama05]
    Amadio, R.: Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae 65, 29–60 (2005)MATHMathSciNetGoogle Scholar
  3. [AR02]
    Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 1–39 (2002)CrossRefMathSciNetGoogle Scholar
  4. [Ata05]
    Atassi, V.: Inférence de type en logique linéaire élémentaire. Master’s thesis, Université Paris 13 (2005)Google Scholar
  5. [Bai02]
    Baillot, P.: Checking polynomial time complexity with types. In: Proceedings of IFIP TCS 2002, Montreal. Kluwer Academic Press, Dordrecht (2002)Google Scholar
  6. [Bai04]
    Baillot, P.: Type inference for light affine logic via constraints on words. Theoretical Computer Science 328(3), 289–323 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. [BC92]
    Bellantoni, S., Cook, S.: New recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. [BT04]
    Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. In: Proceedings LICS 2004. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  9. [BT05]
    Baillot, P., Terui, K.: A feasible algorithm for typing in elementary affine logic. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 55–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [CDLRdR05]
    Coppola, P., Dal Lago, U., Ronchi Della Rocca, S.: Elementary affine logic and the call-by-value lambda calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 131–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [CM01]
    Coppola, P., Martini, S.: Typing lambda-terms in elementary logic with linear constraints. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. [CRdR03]
    Coppola, P., Ronchi Della Rocca, S.: Principal typing in Elementary Affine Logic. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 90–104. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. [DJ03]
    Danos, V., Joinet, J.-B.: Linear logic and elementary time. Information and Computation 183(1), 123–137 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. [Gir87]
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  15. [Gir98]
    Girard, J.-Y.: Light linear logic. Information and Computation 143, 175–204 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. [HJ03]
    Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In: Proc. ACM POPL 2003 (2003)Google Scholar
  17. [Hof03]
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. [LM93]
    Leivant, D., Marion, J.-Y.: Lambda-calculus characterisations of polytime. Fundamenta Informaticae 19, 167–184 (1993)MATHMathSciNetGoogle Scholar
  19. [MM00]
    Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955, pp. 25–42. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. [Ter01]
    Terui, K.: Light Affine Lambda-calculus and polytime strong normalization. In: Proceedings LICS 2001. IEEE Computer Society, Los Alamitos (2001), Full version available at: http://research.nii.ac.jp/~terui Google Scholar
  21. [Ter04a]
    Terui, K.: Light affine set theory: a naive set theory of polynomial time. Studia Logica 77, 9–40 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. [Ter04b]
    Terui, K.: A translation of LAL into DLAL (preprint, 2004), http://research.nii.ac.jp/~terui
  23. [Wel99]
    Wells, J.B.: Typability and type checking in system F are equivalent and undecidable. Ann. Pure Appl. Logic 98(1-3) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vincent Atassi
    • 1
  • Patrick Baillot
    • 1
  • Kazushige Terui
    • 2
  1. 1.LIPN, Univ. Paris 13 / CNRSFrance
  2. 2.National Institute of InformaticsJapan

Personalised recommendations