CSL 2006: Computer Science Logic pp 1-30

# Functorial Boxes in String Diagrams

• Paul-André Melliès
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)

## Abstract

String diagrams were introduced by Roger Penrose as a handy notation to manipulate morphisms in a monoidal category. In principle, this graphical notation should encompass the various pictorial systems introduced in proof-theory (like Jean-Yves Girard’s proof-nets) and in concurrency theory (like Robin Milner’s bigraphs). This is not the case however, at least because string diagrams do not accomodate boxes — a key ingredient in these pictorial systems. In this short tutorial, based on our accidental rediscovery of an idea by Robin Cockett and Robert Seely, we explain how string diagrams may be extended with a notion of functorial box depicting a functor transporting an inside world (its source category) to an outside world (its target category). We expose two elementary applications of the notation: first, we characterize graphically when a faithful balanced monoidal functor F:ℂ $$\longrightarrow$$ $$\mathbb{D}$$ transports a trace operator from the category $$\mathbb{D}$$ to the category ℂ, and exploit this to construct well-behaved fixpoint operators in cartesian closed categories generated by models of linear logic; second, we explain how the categorical semantics of linear logic induces that the exponential box of proof-nets decomposes as two enshrined boxes.

## Keywords

Categorical Semantic Monoidal Category Intuitionistic Logic Linear Logic Graphical Notation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Amadio, R., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge University Press, Cambridge (1998)
2. 2.
Barber, A., Gardner, P., Hasegawa, M., Plotkin, G.: From action calculi to linear logic. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414. Springer, Heidelberg (1998)
3. 3.
Barber, A.: Linear Type Theories, Semantics and Action Calculi. PhD Thesis of the University of Edinburgh. LFCS Technical Report CS-LFCS-97-371 (1997)Google Scholar
4. 4.
Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar. Lecture Notes in Mathematics, vol. 47. Springer, Heidelberg (1967)
5. 5.
Benton, N.: A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933. Springer, Heidelberg (1995)
6. 6.
Benton, N., Bierman, G., de Paiva, V., Hyland, M.: Term assignment for intuitionistic linear logic. Technical Report 262, Computer Laboratory, University of Cambridge (1992)Google Scholar
7. 7.
Berry, G.: Stable models of typed lambda-calculi. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62. Springer, Heidelberg (1978)Google Scholar
8. 8.
G. Bierman. On intuitionistic linear logic. PhD Thesis. University of Cambridge Computer Laboratory (December 1993)Google Scholar
9. 9.
Bierman, G.: What is a categorical model of intuitionistic linear logic? In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 73–93. Springer, Heidelberg (1995)
10. 10.
Blackwell, H., Kelly, M., Power, A.J.: Two dimensional monad theory. Journal of Pure and Applied Algebra 59, 1–41 (1989)
11. 11.
Blute, R., Cockett, R., Seely, R.: The logic of linear functors. Mathematical Structures in Computer Science 12(4), 513–539 (2002)
12. 12.
Blute, R., Cockett, R., Seely, R., Trimble, T.: Natural Deduction and Coherence for Weakly Distributive Categories. Journal of Pure and Applied Algebra 113(3), 229–296 (1996)
13. 13.
Burroni, A.: Higher Dimensional Word Problem. In: Curien, P.-L., Pitt, D.H., Pitts, A.M., Poigné, A., Rydeheard, D.E., Abramsky, S. (eds.) CTCS 1991. LNCS, vol. 530. Springer, Heidelberg (1991)
14. 14.
Cockett, R., Seely, R.: Linearly Distributive Categories. Journal of Pure and Applied Algebra 114(2), 133–173 (1997)
15. 15.
Cockett, R., Seely, R.: Linear Distributive Functors. The Barrfestschrift, Journal of Pure and Applied Algebra 143(1-3) (November 10, 1999)Google Scholar
16. 16.
Day, B.J., Street, R.: Quantum categories, star autonomy, and quantum groupoids. Galois Theory, Hopf Algebras, and Semiabelian Categories. Fields Institute Communications 43 (American Math. Soc. 2004), 187–226 (2004)Google Scholar
17. 17.
Gentzen, G.: Investigations into logical deduction (1934); An english translation appears. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam (1969)Google Scholar
18. 18.
Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
19. 19.
Girard, J.-Y.: Linear logic: its syntax and semantics. In: Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222, pp. 1–42. Cambridge University Press, Cambridge (1995)
20. 20.
Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda-calculi. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210. Springer, Heidelberg (1997)Google Scholar
21. 21.
Hasegawa, R.: Two applications of analytic functors. Theoretical Computer Science 272, 113–175 (2002)
22. 22.
Hermida, C., Power, J.: Fibrational control structures. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 117–129. Springer, Heidelberg (1995)Google Scholar
23. 23.
Hyland, M., Schalk, A.: Glueing and orthogonality for models of linear logic. Theoretical Computer Science 294(1/2), 183–231 (2003)
24. 24.
Im, G.B., Kelly, M.: A universal property of the convolution monoidal structure. J. Pure Appl. Algebra 43, 75–88 (1986)
25. 25.
Kelly, M.: Doctrinal adjunction. Lecture Notes in Math., vol. 420, pp. 257–280 (1974)Google Scholar
26. 26.
Joyal, A.: Remarques sur la théorie des jeux à deux personnes. Gazette des Sciences Mathématiques du Québec 1(4), 46–52 (1977)Google Scholar
27. 27.
Joyal, A., Street, R.: Braided Tensor Categories. Advances in Mathematics 102, 20–78 (1993)
28. 28.
Joyal, A., Street, R.: The geometry of tensor calculus, I. Advances in Mathematics 88, 55–112 (1991)
29. 29.
Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb. Phil. Soc. 119, 447–468 (1996)
30. 30.
Lack, S.: Limits for lax morphisms. Applied Categorical Structures 13(3), 189–203 (2005)
31. 31.
Lafont, Y.: Logiques, catégories et machines. PhD thesis, Université Paris 7 (1988)Google Scholar
32. 32.
Lafont, Y.: From Proof Nets to Interaction Nets. In: Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222, pp. 225–247. Cambridge University Press, Cambridge (1995)
33. 33.
Lamarche, F.: Sequentiality, games and linear logic (unpublished manuscript, 1992)Google Scholar
34. 34.
Lambek, J., Scott, P.: Introduction to Higher Order Categorical Logic. Cambridge Studies in Advanced Mathematics, vol. 7. Cambridge University Press, Cambridge (1986)
35. 35.
Lawvere, F.W.: Ordinal sums and equational doctrines. Springer Lecture Notes in Mathematics, vol. 80, pp. 141–155. Springer, Berlin (1969)Google Scholar
36. 36.
Lane, S.M.: Categories for the working mathematician. Graduate Texts in Mathematics, 2nd edn., vol. 5. Springer, Heidelberg (1998)
37. 37.
Maietti, M., Maneggia, P., de Paiva, V., Ritter, E.: Relating categorical semantics for intuitionistic linear logic. Applied Categorical Structures 13(1), 1–36 (2005)
38. 38.
Melliès, P.-A.: Typed lambda-calculi with explicit substitutions not terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995)
39. 39.
Melliès, P.-A.: Axiomatic Rewriting 4: a stability theorem in rewriting theory. In: Proceedings of Logic in Computer Science 1998. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
40. 40.
Melliès, P.-A.: Categorical semantics of linear logic: a survey. Panoramas et Synthèses, Société Mathématique de France (to appear, 2007)Google Scholar
41. 41.
Milner, R.: Pure bigraphs: structure and dynamics. Information and Computation 204(1) (January 2006)Google Scholar
42. 42.
Pavlovic, D.: Categorical logic of names and abstraction in action calculi. Mathematical Structures in Computer Science 7(6), 619–637 (1997)
43. 43.
Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D.J.A. (ed.) Combinatorial Mathematics and its Applications, pp. 221–244. Academic Press, New York (1971)Google Scholar
44. 44.
Penrose, R.: Spinors and Space-Time, vol. 1, pp. 68–71, 423-434. Cambridge University Press, Cambridge (1984)
45. 45.
Seely, R.: Linear logic, *-autonomous categories and cofree coalgebras. Applications of categories in logic and computer science, Contemporary Mathematics, 92 (1989)Google Scholar
46. 46.
Schanuel, S., Street, R.: The free adjunction. Cahiers topologie et géométrie différentielle catégoriques 27, 81–83 (1986)
47. 47.
Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra 8, 149–181 (1976)
48. 48.
Street, R.: Functorial calculus in monoidal bicategories. Applied Categorical Structures 11, 219–227 (2003)
49. 49.
Tabareau, N.: De l’opérateur de trace dans les jeux de Conway. Mémoire de Master 2. Master Parisien de Recherche en Informatique, Université Paris 7 (September 2005)Google Scholar