Classification of Biological Sequences with Kernel Methods

  • Jean-Philippe Vert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4201)


We survey the foundations of kernel methods and the recent developments of kernels for variable-length strings, in the context of biological sequence analysis.


Support Vector Machine Kernel Method Hide State Reproduce Kernel Hilbert Space Biological Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schölkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. J. Mach. Learn. Res. 2, 419–444 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Mach. Learn. 57(3), 205–232 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  6. 6.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)MATHGoogle Scholar
  7. 7.
    Kimeldorf, G.S., Wahba, G.: Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33, 82–95 (1971)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: a string kernel for SVM protein classification. In: Altman, R.B., Dunker, A.K., Hunter, L., Lauerdale, K., Klein, T.E. (eds.) Proceedings of the Pacific Symposium on Biocomputing 2002, pp. 564–575. World Scientific, Singapore (2002)Google Scholar
  9. 9.
    Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels for discriminative protein classification. Bioinformatics 20(4), 467–476 (2004)CrossRefGoogle Scholar
  10. 10.
    Wang, M., Yang, J., Liu, G.P., Xu, Z.J., Chou, K.C.: Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Protein Eng. Des. Sel. 17(6), 509–516 (2004)CrossRefGoogle Scholar
  11. 11.
    Zhang, S.W., Pan, Q., Zhang, H.C., Zhang, Y.L., Wang, H.Y.: Classification of protein quaternary structure with support vector machine. Bioinformatics 19(18), 2390–2396 (2003)CrossRefGoogle Scholar
  12. 12.
    Logan, B., Moreno, P., Suzek, B., Weng, Z., Kasif, S.: A Study of Remote Homology Detection. Technical Report CRL 2001/05, Compaq Cambridge Research laboratory (2001)Google Scholar
  13. 13.
    Ben-Hur, A., Brutlag, D.: Remote homology detection: a motif based approach. Bioinformatics 19(suppl. 1), i26–i33 (2003)CrossRefGoogle Scholar
  14. 14.
    Liao, L., Noble, W.: Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships. J. Comput. Biol. 10(6), 857–868 (2003)CrossRefGoogle Scholar
  15. 15.
    Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Jaakkola, T., Diekhans, M., Haussler, D.: A Discriminative Framework for Detecting Remote Protein Homologies. J. Comput. Biol. 7(1,2), 95–114 (2000)CrossRefGoogle Scholar
  17. 17.
    Seeger, M.: Covariance Kernels from Bayesian Generative Models. In: Adv. Neural Inform. Process. Syst., vol. 14, pp. 905–912 (2002)Google Scholar
  18. 18.
    Cuturi, M., Vert, J.P.: The context-tree kernel for strings. Neural Network 18(4), 1111–1123 (2005)CrossRefGoogle Scholar
  19. 19.
    Cuturi, M., Vert, J.P.: Semigroup kernels on finite sets. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Adv. Neural Inform. Process. Syst., vol. 17, pp. 329–336. MIT Press, Cambridge (2005)Google Scholar
  20. 20.
    Tsuda, K., Kin, T., Asai, K.: Marginalized Kernels for Biological Sequences. Bioinformatics 18, S268–S275 (2002)Google Scholar
  21. 21.
    Vert, J.P., Thurman, R., Noble, W.S.: Kernels for gene regulatory regions. In: Adv. Neural. Inform. Process Syst. (2006)Google Scholar
  22. 22.
    Kin, T., Tsuda, K., Asai, K.: Marginalized kernels for RNA sequence data analysis. In: Lathtop, R., Nakai, K., Miyano, S., Takagi, T., Kanehisa, M. (eds.) Genome Informatics 2002, pp. 112–122. Universal Academic Press, London (2002)Google Scholar
  23. 23.
    Kashima, H., Tsuda, K., Inokuchi, A.: Kernels for graphs. In: Schölkopf, B., Tsuda, K., Vert, J. (eds.) Kernel Methods in Computational Biology, pp. 155–170. MIT Press, Cambridge (2004)Google Scholar
  24. 24.
    Haussler, D.: Convolution Kernels on Discrete Structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz (1999)Google Scholar
  25. 25.
    Vert, J.P., Saigo, H., Akutsu, T.: Local alignment kernels for biological sequences. In: Schölkopf, B., Tsuda, K., Vert, J. (eds.) Kernel Methods in Computational Biology, pp. 131–154. MIT Press, Cambridge (2004)Google Scholar
  26. 26.
    Saigo, H., Vert, J.P., Ueda, N., Akutsu, T.: Protein homology detection using string alignment kernels. Bioinformatics 20(11), 1682–1689 (2004)CrossRefGoogle Scholar
  27. 27.
    Smith, T., Waterman, M.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  28. 28.
    Shimodaira, H., Noma, K.I., Nakai, M., Sagayama, S.: Dynamic time-alignment kernel in support vector machine. In: Adv. Neural. Inform. Process Syst., pp. 921–928 (2001)Google Scholar
  29. 29.
    Ding, C., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)CrossRefGoogle Scholar
  30. 30.
    Karchin, R., Karplus, K., Haussler, D.: Classifying G-protein coupled receptors with support vector machines. Bioinformatics 18, 147–159 (2002)CrossRefGoogle Scholar
  31. 31.
    Cai, C., Wang, W., Sun, L., Chen, Y.: Protein function classification via support vector machine approach. Math. Biosci. 185(2), 111–122 (2003)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hua, S., Sun, Z.: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8), 721–728 (2001)CrossRefGoogle Scholar
  33. 33.
    Park, K.J., Kanehisa, M.: Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 19(13), 1656–1663 (2003)CrossRefGoogle Scholar
  34. 34.
    Matsuda, A., Vert, J.P., Saigo, H., Ueda, N., Toh, H., Akutsu, T.: A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14(11), 2804–2813 (2005)CrossRefGoogle Scholar
  35. 35.
    Karklin, Y., Meraz, R.F., Holbrook, S.R.: Classification of non-coding RNA using graph representations of secondary structure. In: Pac. Symp. Biocomput., pp. 4–15 (2005)Google Scholar
  36. 36.
    Zhang, X.H.F., Heller, K.A., Hefter, I., Leslie, C.S., Chasin, L.A.: Sequence Information for the Splicing of Human Pre-mRNA Identified by Support Vector Machine Classification. Genome Res. 13(12), 2637–2650 (2003)CrossRefGoogle Scholar
  37. 37.
    Dror, G., Sorek, R., Shamir, R.: Accurate identification of alternatively spliced exons using support vector machine. Bioinformatics 21(7), 897–901 (2005)CrossRefGoogle Scholar
  38. 38.
    Friedel, C.C., Jahn, K.H.V., Sommer, S., Rudd, S., Mewes, H.W., Tetko, I.V.: Support vector machines for separation of mixed plant-pathogen EST collections based on codon usage. Bioinformatics 21, 1383–1388 (2005)CrossRefGoogle Scholar
  39. 39.
    Rose, J.R., Turkett, W.H.J., Oroian, I.C., Laegreid, W.W., Keele, J.: Correlation of amino acid preference and mammalian viral genome type. Bioinformatics (2005)Google Scholar
  40. 40.
    Lin, K., Kuang, Y., Joseph, J.S., Kolatkar, P.R.: Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Nucl. Acids Res. 30(11), 2599–2607 (2002)CrossRefGoogle Scholar
  41. 41.
    Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.: Learning the Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res. 5, 27–72 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Philippe Vert
    • 1
  1. 1.Ecole des Mines de ParisCentre for Computational BiologyFontainebleauFrance

Personalised recommendations