Performance Evaluation of AQM Schemes in Rate-Varying 3G Links

  • Juan J. Alcaraz
  • Fernando Cerdan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4217)


When TCP is carried over 3G links, overbuffering and buffer overflow at the RLC layer degrades its performance. AQM techniques at the RLC buffer can bring noticeable enhancements to TCP performance without introducing changes in 3G specifications. We show that the optimum parameter setting of AQM algorithms in RLC buffers is strongly related to the radio bearer rate, which can be changed dynamically by control layer protocols. By means of extensive simulation experiments we propose, for each specified nominal rate, optimum configurations that keep the goodput near the maximum while the delay is reduced up to 50%. We consider two AQM schemes, an adapted RED algorithm and a novel deterministic one, SBD described in this paper. We illustrate how an automatic reconfiguration of AQM parameters avoids the degradation caused by sudden changes in the radio bearer rate.


Random Early Detection Buffer Occupancy Active Queue Management Radio Link Control Radio Resource Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    3GPP TS 25.322, Radio Link Control (RLC) protocol specification, v. 6.4.0 (June 2005)Google Scholar
  2. 2.
    Meyer, M., Sachs, J., Holzke, M.: Performance Evaluation of a TCP Proxy in WCDMA Networks. In: IEEE Wireless Communication (October 2003), pp. 70–79 (2003)Google Scholar
  3. 3.
    Inamura, H., et al.: TCP over Second (2.5G) and Third (3G) Generation Wireless Networks. In: IETF RFC 3481 (February 2003)Google Scholar
  4. 4.
    Chakravorty, R., Clark, A., Pratt, I.: Optimizing Web Delivery over Wireless Links: Design, Implementation and Experiencies. IEEE J. Select. Areas Commun. 23(2), 402–416 (2005)CrossRefGoogle Scholar
  5. 5.
    Agfors, M., Ludwig, R., Meyer, M., Peisa, J.: Queue Management for TCP Traffic over 3G Links. In: Proc. IEEE WCNC 2003, pp. 1663–1668 (2003)Google Scholar
  6. 6.
    Alcaraz, J.J., Cerdan, F., García-Haro, J.: Optimizing TCP and RLC Interaction in the UMTS Radio Access Network. IEEE Network 20(2), 56–64 (2006)CrossRefGoogle Scholar
  7. 7.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Networking 1, 397–413 (1993)CrossRefGoogle Scholar
  8. 8.
    Holma, H., Toskala, A.: WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, 3rd edn. Wiley, Chichester (2004)Google Scholar
  9. 9.
    Rossi, M., Scaranari, L., Zorzi, M.: On the UMTS RLC Parameters Setting and their Impact on Higher Layers Performance. In: Proc. IEEE 57th VTC, vol. 3, pp. 1827–1832 (2003)Google Scholar
  10. 10.
    Bestak, R., Godlewski, P., Martins, P.: RLC Buffer Occupancy when Using a TCP Connection over UMTS. In: Proc. IEEE PIMRC, vol. 3, pp. 1161–1165 (2002)Google Scholar
  11. 11.
    Gurtov, A., Floyd, S.: Modeling Wireless Links for Transport Protocols. ACM SIGCOMM Computer Communication Review 34(2), 85–96 (2004)CrossRefGoogle Scholar
  12. 12.
    Varga, A.: The OMNeT++ Discrete Event Simulation System. In: Proc. European Simulation Multiconference (June 2001)Google Scholar
  13. 13.
    Chockalingam, A., Zorzi, M.: Wireless TCP Performance with Link Layer FEC/ARQ. In: Proc. IEEE ICC, June 1999, pp. 1212–1216 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juan J. Alcaraz
    • 1
  • Fernando Cerdan
    • 1
  1. 1.Department of Information Technologies and CommunicationsPolytechnic University of CartagenaCartagenaSpain

Personalised recommendations