Advertisement

Mean Effective Gain of Compact WLAN Genetic Printed Dipole Antennas in Indoor-Outdoor Scenarios

  • Pedro Luis Carro
  • Jesus de Mingo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4217)

Abstract

Two dual-printed dipole antennas for WLAN applications operating in the 802.11 a/b/g (2.4-2.5 Ghz and 4.9-5.875 GHz) frequency bands are presented. Genetic Algorithm optimization (GA) is applied first, to a classical dual band printed dipole antenna schema. Later on, a pre-fractal technique is proposed on the larger strip and electromagnetic parameters are re-optimized to achieve a more compact radiator. Frequency performance of both antennas is introduced showing a VSWR<1.5 for a input impedance of 50 Ohms. Finally, the mean effective gain (MEG) is worked out considering several scenarios. Results for both antennas for typical indoor and outdoor environments are given using the statistical angle of arrival behavior of such environments.

Index terms – WLAN, printed dipole antennas, genetic algorithms, Mean Effective Gain.

Keywords

Input Impedance Return Loss Dipole Antenna Gain Pattern Dual Band Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tefiku, F., Grimes, C.A.: Design of Broad-Band and Dual Band Antennas Comprised of Series-Fed Printed-Strip Dipole Pairs. IEEE Trans. Antennas and Propagat 48(6) (June 2000)Google Scholar
  2. 2.
    Petko, J.S., Werner, D.H.: Miniature reconfigurable three-dimensional fractal tree antennas. IEEE Trans. Antennas and Propagat 52(8) (August 2004)Google Scholar
  3. 3.
    de Mingo, J., Valdovinos, A., Gutierrez, F., Gonzalez, J.M.: Inverted-F antenna with parasitic elements for TETRA handset. In: Vehicular Technology Conference, 1999. VTC 1999 - Fall, September 19-22, 1999. IEEE VTS 50th, vol. 3 (1999)Google Scholar
  4. 4.
    Douglas, M.G., Okoniewski, M., Stuchly, M.A.: A planar diversity antenna for handheld PCS devices. IEEE Transactions on Vehicular Technology 47(3) (August 1998)Google Scholar
  5. 5.
    Kalliola, K., Sulonen, K., Laitinen, H., Kivekas, O., Krogerus, J., Vainikainen, P.: Angular power distribution and mean effective gain of mobile antenna in different propagation environments. IEEE Transactions on Vehicular Technology 51(5) (September 2002)Google Scholar
  6. 6.
    Waldschmidt, C., Wiesbeck, W.: Compact wide-band multimode antennas for MIMO and diversity. IEEE Transactions on Antennas and Propagation 52(8) (August 2004)Google Scholar
  7. 7.
    Hajian, M., Nikookar, H., der Zwan, F., Ligthart, L.P.: Branch correlation measurements and analysis in an indoor Rayleigh fading channel for polarization diversity using a dual polarized patch antenna,Microwave and Wireless Components Letters. IEEE 15(9) (September 2005)Google Scholar
  8. 8.
    Spencer, Q.H., Jeffs, B.D., Jensen, M.A., Swindlehurst, A.L.: Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. Selected Areas in Communications, IEEE Journal 18(3) (March 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pedro Luis Carro
    • 1
  • Jesus de Mingo
    • 1
  1. 1.Electronic Engineering and Communications DepartmentUniversity of ZaragozaZaragozaSpain

Personalised recommendations