Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics

  • Hendrik Blockeel
  • Leander Schietgat
  • Jan Struyf
  • Sašo Džeroski
  • Amanda Clare
Conference paper

DOI: 10.1007/11871637_7

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4213)
Cite this paper as:
Blockeel H., Schietgat L., Struyf J., Džeroski S., Clare A. (2006) Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics. In: Fürnkranz J., Scheffer T., Spiliopoulou M. (eds) Knowledge Discovery in Databases: PKDD 2006. PKDD 2006. Lecture Notes in Computer Science, vol 4213. Springer, Berlin, Heidelberg

Abstract

Hierarchical multilabel classification (HMC) is a variant of classification where instances may belong to multiple classes organized in a hierarchy. The task is relevant for several application domains. This paper presents an empirical study of decision tree approaches to HMC in the area of functional genomics. We compare learning a single HMC tree (which makes predictions for all classes together) to learning a set of regular classification trees (one for each class). Interestingly, on all 12 datasets we use, the HMC tree wins on all fronts: it is faster to learn and to apply, easier to interpret, and has similar or better predictive performance than the set of regular trees. It turns out that HMC tree learning is more robust to overfitting than regular tree learning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hendrik Blockeel
    • 1
  • Leander Schietgat
    • 1
  • Jan Struyf
    • 1
    • 2
  • Sašo Džeroski
    • 3
  • Amanda Clare
    • 4
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Dept. of Biostatistics and Medical InformaticsUniv. of WisconsinMadisonUSA
  3. 3.Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
  4. 4.Department of Computer ScienceUniversity of Wales AberystwythUK

Personalised recommendations