Improving Functional Modularity in Protein-Protein Interactions Graphs Using Hub-Induced Subgraphs

  • Duygu Ucar
  • Sitaram Asur
  • Umit Catalyurek
  • Srinivasan Parthasarathy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4213)


Dense subgraphs of Protein-Protein Interaction (PPI) graphs are believed to be potential functional modules and play an important role in inferring the functional behavior of proteins. PPI graphs are known to exhibit the scale-free property in which a few nodes (hubs) are highly connected. This scale-free topology of PPI graphs makes it hard to isolate dense subgraphs effectively. In this paper, we propose a novel refinement method based on neighborhoods and the biological importance of hub proteins. We show that this refinement improves the functional modularity of the PPI graph and leads to effective clustering into dense components. A detailed comparison of these dense components with the ones obtained from the original PPI graph reveal three major benefits of the refinement: i) Enhancement of existing functional groupings; ii) Isolation of new functional groupings; and iii) Soft clustering of multifunctional hub proteins to multiple functional groupings.


Functional Module Original Graph Nuclear Pore Complex Dense Component Cluster Score 


  1. 1.
    Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2006)Google Scholar
  2. 2.
    Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance in complex networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar
  3. 3.
    Arnau, V., Mars, S., Marin, I.: Iterative cluster analysis of protein interaction data. Bioinformatics 21(3), 364–378 (2005)CrossRefGoogle Scholar
  4. 4.
    Ashburner, M., et al.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)CrossRefGoogle Scholar
  5. 5.
    Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinfomatics 4, 2 (2003)Google Scholar
  6. 6.
    Berg, J., Lässig, M., Wagner, A.: Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evolutionary Biology 4, 51 (2004)Google Scholar
  7. 7.
    Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guénoche, A., Jacq, B.: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology 5 (2003)Google Scholar
  8. 8.
    Brun, C., Herrmann, C., Guenoche, A.: Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinformatics 5(95) (July 2004)Google Scholar
  9. 9.
    Canton, D.A., Litchfield, D.W.: The shape of things to come: An emerging role for protein kinase ck2 in the regulation of cell morphology and the cytoskeleton. Cell Signalling 18, 267–275 (2006)CrossRefGoogle Scholar
  10. 10.
    Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks (2002)Google Scholar
  11. 11.
    Costa, L.F.: Hub-based community finding (2004),
  12. 12.
    Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks. Physica A 340, 388–394 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gilchrist, D., Rexach, M.: Molecular basis for the rapid dissociation of nuclear localization signals from karyopherin alpha in the nucleoplasm. J. Biol. Chem. 278(51), 51937–51949 (2003)CrossRefGoogle Scholar
  14. 14.
    Hua, J., Koes, D., Kou, Z.: Finding motifs in protein-protein interaction networks. Project Final Report, CMU (2003),
  15. 15.
    Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 44, 411, 41–42(2001)CrossRefGoogle Scholar
  16. 16.
    Karypis, G., Kumar, V.: Unstructured graph partitioning and sparse matrix ordering system. Technical report,
  17. 17.
    Li, X.-L., Tan, S.-H., Foo, C.-S., Ng, S.-K.: Interaction graph mining for protein complexes using local clique merging. Genome Informatics 16(2), 260–269 (2005)Google Scholar
  18. 18.
    Mayes, A.E., Verdone, L., Legrain, P., Beggs, J.D.: Characterization of sm-like proteins in yeast and their association with u6 snrna. EMBO J. 18(15), 4321–4331 (1999)CrossRefGoogle Scholar
  19. 19.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)Google Scholar
  20. 20.
    Pemberton, L.F., Paschal, B.M.: Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187 (2005)Google Scholar
  21. 21.
    Barabási, A.L., Yook, S., Oltvai, Z.N.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRefGoogle Scholar
  22. 22.
    Thomas, A., Cannings, R., Monk, N.A.M., Cannings, C.: On the structure of protein-protein interaction networks. Biochemical Society Transactions 31, 1491–1496 (2003)CrossRefGoogle Scholar
  23. 23.
    Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving functional modularity in protein-protein interactions graphs using hub-induced subgraphs (2006), (Electronic report under 2006/TR41.pdf)
  24. 24.
    Ucar, D., Parthasarathy, S., Asur, S., Wang, C.: Effective preprocessing strategies for functional clustering of a protein-protein interactions network. In: IEEE, International Symposium on Bioinformatics and Bioengineering, BIBE (2005)Google Scholar
  25. 25.
    Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction networks. Complexus 1, 38 (2003)Google Scholar
  26. 26.
    Watts, D., Strogatz, S.: Collective dynamics of small world networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Duygu Ucar
    • 1
  • Sitaram Asur
    • 1
  • Umit Catalyurek
    • 2
  • Srinivasan Parthasarathy
    • 1
    • 2
  1. 1.Department of Computer Science and EngineeringThe Ohio State University 
  2. 2.Department of Biomedical InformaticsThe Ohio State University 

Personalised recommendations