Don’t Be Afraid of Simpler Patterns

  • Björn Bringmann
  • Albrecht Zimmermann
  • Luc De Raedt
  • Siegfried Nijssen
Conference paper

DOI: 10.1007/11871637_10

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4213)
Cite this paper as:
Bringmann B., Zimmermann A., De Raedt L., Nijssen S. (2006) Don’t Be Afraid of Simpler Patterns. In: Fürnkranz J., Scheffer T., Spiliopoulou M. (eds) Knowledge Discovery in Databases: PKDD 2006. PKDD 2006. Lecture Notes in Computer Science, vol 4213. Springer, Berlin, Heidelberg

Abstract

This paper investigates the trade-off between the expressiveness of the pattern language and the performance of the pattern miner in structured data mining. This trade-off is investigated in the context of correlated pattern mining, which is concerned with finding the k-best patterns according to a convex criterion, for the pattern languages of itemsets, multi-itemsets, sequences, trees and graphs. The criteria used in our investigation are the typical ones in data mining: computational cost and predictive accuracy and the domain is that of mining molecular graph databases. More specifically, we provide empirical answers to the following questions: how does the expressive power of the language affect the computational cost? and what is the trade-off between expressiveness of the pattern language and the predictive accuracy of the learned model? While answering the first question, we also introduce a novel stepwise approach to correlated pattern mining in which the results of mining a simpler pattern language are employed as a starting point for mining in a more complex one. This stepwise approach typically leads to significant speed-ups (up to a factor 1000) for mining graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Björn Bringmann
    • 1
  • Albrecht Zimmermann
    • 1
  • Luc De Raedt
    • 1
  • Siegfried Nijssen
    • 1
  1. 1.Institute of Computer Science, Machine Learning LabAlbert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations