Solving Algorithmic Problems on Orders and Lattices by Relation Algebra and RelView

  • Rudolf Berghammer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4194)


Relation algebra is well suited for dealing with many problems on ordered sets. Introducing lattices via order relations, this suggests to apply it and tools for its mechanization for lattice-theoretical problems, too. We combine relation algebra and the specific purpose Computer Algebra system RelView to solve some algorithmic problems.


Complete Lattice Binary Decision Diagram Black Vertex Algorithmic Problem Boolean Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behnke, R., et al.: RELVIEW — A system for calculation with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Berghammer, R., Fronk, A.: Exact computation of minimum feedback vertex sets with relational algebra. Fund. Informaticae 70, 301–316 (2006)MathSciNetMATHGoogle Scholar
  3. 3.
    Berghammer, R., Schmidt, G.: Discrete ordering relations. Discr. Math. 43, 1–7 (1983)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relation algebra using binary decision diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 241–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Berghammer, R., Neumann, F.: RELVIEW – An OBDD-based Computer Algebra system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Berghammer, R.: Computation of cut completions and concept lattices using relational algebra and RELVIEW. J. Relat. Meth. in Comput. Sci. 1, 50–72 (2004)Google Scholar
  7. 7.
    Berghammer, R., Milanese, U.: Relational approach to Boolean logic problems. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 48–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Birkhoff, G.: Lattice theory, 3rd edn., vol. XXV. American Math. Society Coll. Publ., American Math. Society (1967)Google Scholar
  9. 9.
    Freese, R., Jezek, J., Nation, J.B.: Free lattices. Mathematical Surveys and Monographs, vol. 42. American Math. Society (1995)Google Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations. Springer, Heidelberg (1999)MATHGoogle Scholar
  11. 11.
    Leoniuk, B.: ROBDD-based implementation of relational algebra with applications (in German). Ph.D. thesis, Univ. Kiel (2001)Google Scholar
  12. 12.
    Milanese, U.: On the implementation of a ROBDD-based tool for the manipulation and visualization of relations (in German). Ph.D. thesis, Univ. Kiel (2003)Google Scholar
  13. 13.
    Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inform. Proc. Let. 70, 259–264 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Schmidt, G., Ströhlein, T.: Relations and graphs. Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoret. Comput. Sci. Springer, Heidelberg (1993)MATHGoogle Scholar
  15. 15.
    Skornjakow, L.A.: Elements of lattice theory (in German). Akademie-Verlag (1973)Google Scholar
  16. 16.
    Tarski, A.: On the calculus of relations. J. Symbolic Logic 6, 73–89 (1941)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rudolf Berghammer
    • 1
  1. 1.Institut für InformatikUniversität KielKiel

Personalised recommendations