Advertisement

Reducing Computational Costs in the Basic Perturbation Lemma

  • Ainhoa Berciano
  • María José Jiménez
  • Pedro Real
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4194)

Abstract

Homological Perturbation Theory [11,13] is a well-known general method for computing homology, but its main algorithm, the Basic Perturbation Lemma, presents, in general, high computational costs. In this paper, we propose a general strategy in order to reduce the complexity in some important formulas (those following a specific pattern) obtained by this algorithm. Then, we show two examples of application of this methodology.

Keywords

Tensor Product Polynomial Algebra Homological Algebra Cyclic Homology Tensor Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez, V., Armario, A., Real, P., Silva, B.: HPT and computability of Hochschild and cyclic homologies of commutative DGA–algebras. In: Conference on Secondary Calculus and Cohomological Physics, EMIS Electronic Proceedings, Moscow (1997), http://www.emis.de/proceedings
  2. 2.
    Brown, R.: The twisted Eilenberg-Zilber theorem, Celebrazioni Archimedae del Secolo XX, Simposio di Topologia, pp. 34–37 (1967)Google Scholar
  3. 3.
    Burghelea, D., Vigué Poirrier, M.: Cyclic homology of commutative algebras I, Algebraic Topology Rational Homotopy. Lecture Notes in Mathematics, vol. 1318, pp. 51–72 (1986)Google Scholar
  4. 4.
    C.H.A.T.A. group. Computing “small” 1–homological models for Commutative Differential Graded Algebras. In: Proc. Third Workshop on Computer Algebra in Scientific Computing, pp. 87–100. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Univ. Press, Princeton (1956)MATHGoogle Scholar
  6. 6.
    Eilenberg, S., MacLane, S.: On the groups H(π,n), I. Annals of Math. 58, 55–106 (1953)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Eilenberg, S., MacLane, S.: On the groups H(π,n), II. Annals of Math. 60, 49–139 (1954)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gugenheim, V.K.A.M.: On the chain complex of a fibration. Illinois J. Math. 3, 398–414 (1972)MathSciNetGoogle Scholar
  9. 9.
    Gugenheim, V.K.A.M.: On Chen’s iterated integrals. Illinois J. Math., 703–715 (1977)Google Scholar
  10. 10.
    Gugenheim, V.K.A.M., Lambe, L.: Perturbation theory in Differential Homological Algebra, I. Illinois J. Math. 33, 56–582 (1989)MathSciNetGoogle Scholar
  11. 11.
    Gugenheim, V.K.A.M., Lambe, L., Stasheff, J.: Perturbation theory in differential homological algebra, II. Illinois J. Math. 35(3), 357–373 (1991)MATHMathSciNetGoogle Scholar
  12. 12.
    Gugenheim, V.K.A.M., Stasheff, J.: On perturbations and A  ∞ –structures. Bull. Soc. Math. Belg. 38, 237–246 (1986)MATHMathSciNetGoogle Scholar
  13. 13.
    Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Zeit. 207, 245–280 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jiménez, M.J., Real, P.: “Coalgebra” structures on 1–homological models for commutative differential graded algebras. In: Proc. Fourth Workshop on Computer Algebra in Scientific Computing, pp. 347–361. Springer, Heidelberg (2001)Google Scholar
  15. 15.
    Lambe, L.A., Stasheff, J.: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58, 363–376 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    MacLane, S.: Homology, Classics in Mathematics. Springer, Berlin (1995); Reprint of the 1975 editionGoogle Scholar
  17. 17.
    Real, P.: Homological perturbation theory and associativity. Homology, Homotopy and Applications 2(5), 51–88 (2000)MATHMathSciNetGoogle Scholar
  18. 18.
    Shih, W.: Homologie des espaces fibrés. Inst. Hautes Etudes Sci. 13, 93–176 (1962)MATHGoogle Scholar
  19. 19.
    Weibel, C.A.: An introduction to Homological Algebra. Cambridge studies in advanced mathematics, vol. 38. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ainhoa Berciano
    • 1
  • María José Jiménez
    • 2
  • Pedro Real
    • 2
  1. 1.Dpto. Matemática Aplicada, Estadística e Investigación OperativaUniversidad del País VascoLeioa (Vizcaya)Spain
  2. 2.Dpto. de Matemática Aplicada IUniversidad de SevillaSevillaSpain

Personalised recommendations