Advertisement

Parallel Laplace Method with Assured Accuracy for Solutions of Differential Equations by Symbolic Computations

  • Natasha Malaschonok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4194)

Abstract

We produce a parallel algorithm realizing the Laplace transform method for symbolic solution of differential equations. In this paper we consider systems of ordinary linear differential equations with constant coefficients, nonzero initial conditions, and the right-hand sides reduced to the sums of exponents with the polynomial coefficients.

Keywords

Fractional Order Parallel Algorithm Commutative Ring Algebraic System Partial Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akritas, A.G.: Elements of Computer Algebra with Applications. J. Wiley Interscience, New York (1989)MATHGoogle Scholar
  2. 2.
    Burghelea, D., Haller, S.: Laplace transform, dynamics and spectral geometry (January 17, 2005) arXiv:math.DG/0405037v2Google Scholar
  3. 3.
    Dahiya, R.S., Saberi-Nadjafi, J.: Theorems on n-dimensional Laplace transforms and their applications. In: 15th Annual Conf. of Applied Math., Univ. of Central Oklahoma, Electr. Journ. of Differential Equations, Conf. 02, pp. 61–74 (1999)Google Scholar
  4. 4.
    Davenport, J., Siret, Y., Tournier, E.: Calcul formel. Systèmes et algorithmes de manipulations algébriques. MASSON, Paris (1987)Google Scholar
  5. 5.
    Dixon, J.: Exact solution of linear equations using p-adic expansions. Numer. Math. 40, 137–141 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Felber, F.S.: New exact solutions of differential equations derived by fractional calculus (August 9, 2005) arXiv:math/0508157v1Google Scholar
  7. 7.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  8. 8.
    Goursat, E.: Sur les équations linéaires et la méthode de Laplace. Amer. J. Math. 18, 347–385 (1896)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Malaschonok, G.I.: Solution of systems of linear equations by the p-adic method. Programming and Computer Software 29(2), 59–71 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Malaschonok, G.I.: Matrix Computational Methods in Commutative Rings. Tambov, TSU (2002)Google Scholar
  11. 11.
    Malaschonok, G.I.: Effective Matrix Methods in Commutative Domains. In: Formal Power Series and Algebraic Combinatorics, pp. 506–517. Springer, Berlin (2000)Google Scholar
  12. 12.
    Malaschonok, G.I.: Recursive method for the solution of systems of linear equations. In: Computational Mathematics. 15th IMACS World Congress, vol. I, pp. 475–480. Wissenschaft und Technik Verlag, Berlin (1997)Google Scholar
  13. 13.
    Malaschonok, G.I.: Algorithms for computing determinants in commutative rings. Discrete Math. Appl. 5(6), 557–566 (1996)CrossRefGoogle Scholar
  14. 14.
    Malaschonok, G.I.: Algorithms for the solution of systems of linear equations in commutative rings. In: Effective Methods in Algebraic Geometry. Progr. Math., vol. 94, pp. 289–298. Birkhauser, Boston (1991)Google Scholar
  15. 15.
    Malaschonok, G.I.: Solution of a system of linear equations in an integral domain. USSR J. Comput. Math. and Math. Phys. 23(6), 497–1500 (1983)Google Scholar
  16. 16.
    Malaschonok, G.I.: The solution of a system of linear equations over a commutative ring. Math. Notes 42(3-4), 801–804 (1987)Google Scholar
  17. 17.
    Malaschonok, N.: An algorithm to settle the necessary exactness in Laplace transform method. In: Computer Science and Information Technologies, Yerevan, pp. 453–456 (2005)Google Scholar
  18. 18.
    Malaschonok, N.: Estimations in Laplace transform method for solutions of differential equations in symbolic computations. In: Differential Equations and Computer Algebra Systems, Minsk, pp. 195–199 (2005)Google Scholar
  19. 19.
    Mizutani, N., Yamada, H.: Modified Laplace transformation method and its applications to anharmonic oscillator (February 12, 1997)Google Scholar
  20. 20.
    Podlubny, I.: The Laplace transform method for linear differential equations of the fractional order (October 30, 1997) arXiv:funct-an/9710005v1Google Scholar
  21. 21.
    Roux, J.L.: Extensions de la méthodes de Laplace aux équatons linéaires aux deriveées partielles d’ordre supérieur du second. Bull. Soc. Math. de France 27, 237–262 (1899)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Natasha Malaschonok
    • 1
  1. 1.Tambov State UniversityRussia

Personalised recommendations