Advertisement

Comparison Maps for Relatively Free Resolutions

  • V. Álvarez
  • J. A. Armario
  • M. D. Frau
  • P. Real
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4194)

Abstract

Let Λ be a commutative ring, A an augmented differential graded algebra over Λ (briefly, DGA-algebra) and X be a relatively free resolution of Λ over A. The standard bar resolution of Λ over A, denoted by B(A), provides an example of a resolution of this kind. The comparison theorem gives inductive formulae f : B(A)→X and g : XB(A) termed comparison maps. In case that fg=1 X and A is connected, we show that X is endowed a A  ∞ -tensor product structure. In case that A is in addition commutative then (X,μ X ) is shown to be a commutative DGA-algebra with the product μ X =f*(gg) (* is the shuffle product in B(A)). Furthermore, f and g are algebra maps. We give an example in order to illustrate the main results of this paper.

Keywords

Comparison Theorem Algebra Structure Free Resolution Perturbation Data Homotopy Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: Transferring TTP-structures via contraction. Homology, Homotopy Appl. 7(2), 41–54 (2005)MATHMathSciNetGoogle Scholar
  2. 2.
    Armario, J.A., Real, P., Silva, B.: On p–minimal homological models of twisted tensor products of elementary complexes localized over a prime. In: McCleary, J. (ed.) Higher Homotopy Structures in Topology and Mathematical Physics (Poughkeepsie, NY, 1996), pp. 303–314. Contemp. Math., AMS, Providence, RI (1999)Google Scholar
  3. 3.
    Barnes, D.W., Lambe, L.A.: A fixed point approach to homological perturbation theory. Proc. Amer. Math. Soc. 112(3), 881–892 (1991)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brown, R.: The twisted Eilenberg-Zilber theorem. Celebrazioni Archimedee del secolo XX, Simposio di topologia, pp. 34–37 (1967)Google Scholar
  5. 5.
    Cartan, H.: Algèbres d’Eilenberg-Mac Lane. Séminaire H. Cartan 1954/55 (exposé 2 à 11). Ecole Normale Supérieure, Paris (1956)Google Scholar
  6. 6.
    Eilenberg, S., Mac Lane, S.: On the groups H(π,n), I. Annals of Math. 58, 55–106 (1953)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gugenheim, V.K.A.M., Lambe, L.A.: Perturbation theory in Differential Homological Algebra I. Illinois J. Math. 33(4), 566–582 (1989)MATHMathSciNetGoogle Scholar
  8. 8.
    Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in Differential Homological Algebra II. Illinois J. Math. 35(3), 357–373 (1991)MATHMathSciNetGoogle Scholar
  9. 9.
    Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 209, 245–280 (1991)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Johansson, L., Lambe, L.A.: Transferring algebra structures up to homology equivalence. Math. Scan. 88(2), 181–200 (2001)MathSciNetGoogle Scholar
  11. 11.
    Johansson, L., Lambe, L.A., Sköldberg, E.: On constucting resolutions over the polynomial algebra. Homology, Homotopy Appl. 4(2), 315–336 (2002)MATHMathSciNetGoogle Scholar
  12. 12.
    Lambe, L.A.: Resolutions via homological perturbation. J. Symbolic Comp. 12, 71–87 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lambe, L.A.: Homological perturbation theory. Hochschild homology and formal groups. In: Proc. Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, MA, pp. 183–218. American Mathematical Society, Providence (1992)Google Scholar
  14. 14.
    Lambe, L.A.: Resolutions which split off of the bar construction. J. Pure Appl. Algebra 84, 311–329 (1993)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lambe, L.A., Stasheff, J.D.: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58, 367–376 (1987)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mac Lane, S.: Homology. Classics in Mathematics. Springer, Berlin (1995); Reprint of the 1975 editionGoogle Scholar
  17. 17.
    May, J.P.: The cohomology of restricted Lie algebras and of Hopf algebras. J. Algebra 3, 123–146 (1966)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Prouté, A.: Algèbres différentielles fortement homotopiquement associatives (A  ∞ -algèbre). Ph.D. Thesis, Université Paris VII (1984)Google Scholar
  19. 19.
    Real, P.: Homological Perturbation Theory and Associativity. Homology, Homotopy Appli. 2, 51–88 (2000)MATHMathSciNetGoogle Scholar
  20. 20.
    Stasheff, J.D.: Homotopy Associativity of H-spaces I, II. Trans. A.M.S. 108, 275–312 (1963)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • V. Álvarez
    • 1
  • J. A. Armario
    • 1
  • M. D. Frau
    • 1
  • P. Real
    • 1
  1. 1.Depto. Matemática Aplicada I, E.T.S.I. InformáticaUniversidad de SevillaSevilla(Spain)

Personalised recommendations