Advertisement

Automating Visual Inspection of Print Quality

  • J. Vartiainen
  • S. Lyden
  • A. Sadovnikov
  • J. -K. Kamarainen
  • L. Lensu
  • P. Paalanen
  • H. Kalviainen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)

Abstract

Automatic evaluation of visual print quality is addressed in this study. Due to many complex factors of perceived visual quality its evaluation is divided to separate parts which can be individually evaluated using standardized assessments. Most of the assessments however require active evaluation by trained experts. In this paper one quality assessment, missing dot detection from printed dot patterns, is addressed by defining sufficient hardware for image acquisition and method for detecting and counting missing dots from a test strip. The experimental results are evidence how the human assessment can be automated with the help of machine vision, thus making the test more repeatable and accurate.

Keywords

Test Strip Machine Vision Reciprocal Lattice Machine Vision System Reciprocal Lattice Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Piette, P., Morin, V., Maume, J.: Industrial-scale rotogravure printing tests. Wochenblatt für papierfabrikation 125, 744–750 (1997)Google Scholar
  2. 2.
    Langinmaa, A.: An image analysis based method to evaluate gravure paper quality. In: Proc. 11th IAPR Int. Conf. on Computer Vision and Applications, vol. 1, pp. 777–780 (1992)Google Scholar
  3. 3.
    Heeschen, W., Smith, D.: Robust digital image analysis method for counting missing dots in gravure printing. In: Proc. Int. Printing & Graphic Arts Conference, Atlanta, GA, USA, pp. 29–35 (2000)Google Scholar
  4. 4.
    Sadovnikov, A., Vartiainen, J., Kamarainen, J.K., Lensu, L., Kälviäinen, H.: Detection of irregularities in regular dot patterns. In: Proc. of the IAPR Conf. on Machine Vision Applications, Tsukuba Science City, Japan, pp. 380–383 (2005)Google Scholar
  5. 5.
    IGT: IGT Information leaflet W41 Heliotest (2001)Google Scholar
  6. 6.
    Ashcroft, N.W., Mermin, N.D.: Solid Stace Physics. Thomson Learning, Inc. (1976)Google Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Inc., Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Vartiainen
    • 1
  • S. Lyden
    • 1
  • A. Sadovnikov
    • 1
  • J. -K. Kamarainen
    • 1
  • L. Lensu
    • 1
  • P. Paalanen
    • 1
  • H. Kalviainen
    • 1
  1. 1.Department of Information TechnologyLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations