Advertisement

Robust Ordering of Independent Spatial Components of fMRI Data Using Canonical Correlation Analysis

  • Wang Shijie
  • Luo Limin
  • Zhou Weiping
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)

Abstract

The lack of consistent ordering of components resulted from independent component analysis poses a significant obstacle to the pervasive application of this method on fMRI data analysis. Based on the temporal correlation of physiological noise components of fMRI data and that of cerebrospinal fluid data, the ordering of independent spatial components is ranked using canonical correlation analysis. The proposed method can robustly identify the task-related spatial component without any prior information about the functional activation paradigm. The experimental results of analyzing the real fMRI data show the reliability of the presented method.

Keywords

Independent Component Analysis Canonical Correlation Analysis fMRI Data Independent Component Analysis Blind Source Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of American 87(24), 9868–9872 (1990)Google Scholar
  2. 2.
    Friston, K.J.: Modes or models: a critique on independent component analysis for fMRI. Trends in Cognitive Sciences 2(10), 373–375 (1998)CrossRefGoogle Scholar
  3. 3.
    McKeown, M.J., Makeig, S., Brown, G.C., Jung, T.P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J.: Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping 6(3), 160–188 (1998)CrossRefGoogle Scholar
  4. 4.
    Lange, N., Steother, S.C., Anderson, J.R., Nielsen, F.A., Holmes, A.P., Kolenda, T., Savoy, R., Hansen, L.K.: Plurality and resemblance in fMRI data analysis. Neuroimage 10(3), 282–303 (1999)CrossRefGoogle Scholar
  5. 5.
    Biswal, B.B., Ulmer, J.L.: Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. Journal of computer assisted tomography 23(2), 265–271 (1999)CrossRefGoogle Scholar
  6. 6.
    Tamer, Y., Abou-Bakr, M.Y., Stephen, M.L., Xiaoping, P.H., Yasser, M.K.: Robust ordering of independent components in functional magnetic resonance imaging time series using canonical correlation analysis. In: Proceedings of SPIE, San Diego, USA, vol. 5031, pp. 332–340 (2003)Google Scholar
  7. 7.
    Cordes, D., Carew, J., Eghbalnia, H., Meyerand, E., Quigley, M., Arfanakis, K., Assadi, A., Turski, P., Haughton, V.: Resting-state functional connectivity study using independent component analysis. In: Proceedings 7th International Conference ISMRM, Philadelphia, p.1706 (1999)Google Scholar
  8. 8.
    Liu, T.T., Miller, K.L., Wong, E.C., Frank, L.R., Buxton, R.B.: Using image entropy to select meaningful spatial maps in independent component analysis. In: Proceedings 8th International Conference ISMRM, Denver, CO, p. 847 (2000)Google Scholar
  9. 9.
    Esposito, F., Formisano, E., Cirillo, S., Elefante, R., Tedeschi, G., Goebel, R., DiSalle, F.: Criteria for the rank ordering of fMRI independent component. In: Proceedings 7th Annual Meeting OHBM, Brighton, UK, p. 114 (2001)Google Scholar
  10. 10.
    Moritz, C.H., Rogers, B.P., Meyerand, M.E.: Power spectrum ranked independent component analysis of a periodic fMRI complex motor paradigm. Human Brain Mapping 18(2), 111–122 (2003)CrossRefGoogle Scholar
  11. 11.
    Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Network 10(3), 626–634 (1999)CrossRefGoogle Scholar
  12. 12.
    Noll, D.C., Schneider, W.: Theory, simulation, and compensation of physiological motion artifacts in functional MRI. In: Proceedings of IEEE International Conference on Imaging Processing, Austin, TX, pp. 40–44 (1994)Google Scholar
  13. 13.
    Anderson, T.W.: An introduction to multivariate statistical analysis. John Wiley and Sons, New York (1984)MATHGoogle Scholar
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wang Shijie
    • 1
  • Luo Limin
    • 1
  • Zhou Weiping
    • 1
  1. 1.Laboratory of Image Science and Technology, Department of Computer Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations