3D Method of Using Spatial-Varying Gaussian Mixture and Local Information to Segment MR Brain Volumes

  • Zhigang Peng
  • Xiang Cai
  • William Wee
  • Jing-Huei Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)


The paper is an extension of previous work on spatial-varying Gaussian mixture and Markov random field (SVGM-MRF) from 2D to 3D to segment the MR brain volume with the presence of noise and inhomogeneity. The reason for this extension is that MR brain data are naturally three dimensional, and the information from the additional dimension provides a more accurate conditional probability representation. To reduce large computation time and memory requirements for 3D implementation, a method of using only the local window information to perform the necessary parameter estimations and to achieve the tissue labeling is proposed. The experiments on fifteen brain volumes with various noise and inhomogeneity levels and comparisons with other three well-known 2D methods are provided. The new method outperforms all three 2D methods for high noise and inhomogeneity data which is a very common occurrence in MR applications.


White Matter Gray Matter Cerebral Spinal Fluid Markov Random Field Local Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyer, C.R., Bland, P.H., Pipe, J.: Retrospective Correction of Intensity Inhomogeneities in MRI. IEEE Trans. Med. Imag. 14, 36–41 (1995)CrossRefGoogle Scholar
  2. 2.
    Suri, J.S., Singh, S., Reden, L.: Computer Vision and Pattern Recognition Techniques for 2-D and 3-D MR Cerebral Cortical Segmentation (Part I): A State-of-the-Art Review. Pattern Analysis & Applications 5, 46–76 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cohen, M.S., DuBois, R.M., Zeineh, M.M.: Rapid and Effective Correction of RF Inhomogeneity for High Field Magnetic Resonance Imaging. Hum. Brain Mapp. 10, 204–215 (2000)CrossRefGoogle Scholar
  4. 4.
    Ruan, S., Jaggi, C., Xue, J., Fadili, J., Bloyet, D.: Brain Tissue Classification of Magnetic Resonance Images Using Partial Volume Modeling. IEEE Trans. Med. Imag. 19, 1179–1187 (2000)CrossRefGoogle Scholar
  5. 5.
    Meyer, C.R., Hland, P.H., Pipe, J.: Retrospective Correction of Intensity Inhomogeneities in MRI. IEEE Trans. Med. Imag. 14, 36–41 (1995)CrossRefGoogle Scholar
  6. 6.
    Tincher, M., Meyer, C.R., Gupta, R., Williams, D.M.: Polynomial Modeling and Reduction of Spatial Body-Coil Spatial Inhomogeneity. IEEE Trans. Med. Imag. 12, 361–365 (1993)CrossRefGoogle Scholar
  7. 7.
    Johnston, B., Atkins, M.S., Mackiewich, B., Anderson, M.: Segmentation of Multiple Sclerosis Lesions in Intensity Corrected Multispectral MRI. IEEE Trans. Med. Imag. 15, 154–169 (1996)CrossRefGoogle Scholar
  8. 8.
    Marroquin, J.L., Vemuri, B.C., Botello, S., Calderon, F., Fernandez-Bouzas, A.: An Accurate and Efficient Bayesian Method for Automatic Segmentation of Brain MRI. IEEE Trans. Med. Imag. 21, 934–945 (2002)CrossRefGoogle Scholar
  9. 9.
    Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated Model-Based Tissue Classification of MR Images of the Brain. IEEE Trans. Med. Imag. 18, 897–908 (1999)CrossRefGoogle Scholar
  10. 10.
    Wells III, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive Segmentation of MRI Data. IEEE Trans. Med. Imag. 15, 429–442 (1996)CrossRefGoogle Scholar
  11. 11.
    Guillemaud, R., Brady, M.: Estimating the Bias Field of MR Images. IEEE Trans. Med. Imag. 16, 238–251 (1997)CrossRefGoogle Scholar
  12. 12.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI data. IEEE Trans. Med. Imag. 17, 87–97 (1998)CrossRefGoogle Scholar
  13. 13.
    Peng, Z., Wee, W., Lee, J.H.: MR Brain Imaging Segmentation Based on Spatial Gaussian Mixture Model and Markov Random Field. In: IEEE International Conference on Image Processing (ICIP 2005), Genoa, Italy, vol. 1, pp. 313–316 (2005)Google Scholar
  14. 14.
    Peng, Z., Wee, W., Lee, J.H.: A New Model Based Method to Automatic MR Brain Image Segmentation. In: Proc. 13th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2005), Miami, Florida, USA (2005)Google Scholar
  15. 15.
    Peng, Z., Wee, W., Lee, J.H.: Automatic Segmentation of T1-weighted MR Brain Images Using Spatial-Varying Gaussian Mixture and Markov Random Field. IEEE Trans. Biomed. Eng (submitted, 2006)Google Scholar
  16. 16.
    Dice, L.R.: Measures of the Amount of Ecologic Association between Species. Ecology 26, 297–302 (1945)CrossRefGoogle Scholar
  17. 17.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Holmes, C.J., Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom. IEEE Trans. Med. Imag. 17, 463–468 (1998)CrossRefGoogle Scholar
  18. 18.
    Rajapakse, J.C., Kruggel, F.: Segmentation of MR Images with Intensity Inhomogeneities. Image and Vision Computing 16, 165–180 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhigang Peng
    • 1
  • Xiang Cai
    • 1
  • William Wee
    • 1
  • Jing-Huei Lee
    • 2
  1. 1.Department of Electrical & Computer Engineering and Computer ScienceUniversity of CincinnatiCincinnatiUnited States
  2. 2.Department of Biomedical Engineering, Center for Imaging ResearchUniversity of CincinnatiCincinnatiUnited States

Personalised recommendations