Skin Lesion Diagnosis Using Fluorescence Images

  • Suhail M. Odeh
  • Eduardo Ros
  • Ignacio Rojas
  • Jose M. Palomares
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)


This paper presents a computer aided diagnosis system for skin lesions. Diverse parameters or features extracted from fluorescence images are evaluated for cancer diagnosis. The selection of parameters has a significant effect on the cost and accuracy of an automated classifier. The genetic algorithm (GA) performs parameters selection using the classifier of the K-nearest neighbours (KNN). We evaluate the classification performance of each subset of parameters selected by the genetic algorithm. This classification approach is modular and enables easy inclusion and exclusion of parameters. This facilitates the evaluation of their significance related to the skin cancer diagnosis. We have implemented this parameter evaluation scheme adopting a strategy that automatically optimizes the K-nearest neighbours classifier and indicates which features are more relevant for the diagnosis problem.


Genetic Algorithm Fluorescence Image Independent Component Analysis Basal Cell Carcinoma Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carey, J.D.: MD, Skin cancer, Health Smart Quarterly Health Newsletter. University of New Mexico 12(2), 1–3 (2003)Google Scholar
  2. 2.
    Toro, F., Ros, E., Mota, S., Ortega, J.: Evolutionary algorithms for multi-objetive and multimodal optimization of diagnostic schemes. IEEE Trans. on Biomedical Engineering 53(2), 178–189 (2006)CrossRefGoogle Scholar
  3. 3.
    Mies, C., Bauer, C., Ackermann, G., Bäumler, W., Abels, C., Puntonet, C.G., Alvarez, M.R., Lang, E.W.: Can ICA help classify skin cancer and benign lesions? In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2085, pp. 328–335. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Mehrubeoglu, M., Kehtarnavaz, D.N., Marquez, G., Duvic, M., Lihong, V.W.: Skin lesion classification using oblique-incidence diffuse refiectance spectroscopic imaging Applied optics.  41(1), 182–192 (2002)Google Scholar
  5. 5.
    Sigurdsson, S., Philipsen, P.A., Hansen, L.K., Larsen, J., Gniadecka, M., Wolf, H.C.: Detection of skin cancer by classification of Raman spectra. IEEE Transactions on Biomedical Engineering 51(10), 1784–1793 (2004)CrossRefGoogle Scholar
  6. 6.
    Schmid-Saugeon, P., Guillod, J., Thiran, J.P.: Towards a Computer-Aided Diagnosis System for Pigmented Skin Lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)CrossRefGoogle Scholar
  7. 7.
    Ganster, H., Pinz, A., Roehrer, R., Wildling, E., Binder, M., Kittler, H.: Automated Melanoma Recognition. IEEE Transactions on Medical Imaging 20(3), 233–239 (2001)CrossRefGoogle Scholar
  8. 8.
    Ackermann, G.: Photophysikalische Grundlagen zur Fluoreszenzdiagnostik von Tumoren der Haut. PhD. Dissertation, University of Regensburg (2001)Google Scholar
  9. 9.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8(6), 679–698 (1986)CrossRefGoogle Scholar
  10. 10.
    Parker, J.R.: Algorithms for Image Processing and Computer Vision, pp. 23–29. John Wiley & Sons, Inc., New York (1997)Google Scholar
  11. 11.
    Lim, J.S.: Two-Dimensional Signal and Image Processing, pp. 478–488. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  12. 12.
    Fisher, B., Perkins, S., Walker, A., Wolfart, E.: Hypermedia Image Processing Reference, University of Edinburgh, UK (1995)Google Scholar
  13. 13.
    Gonzalez, R., Woods, R.: Digital Image Processing, pp. 414–428. Addison-Wesley, Reading (1992)Google Scholar
  14. 14.
    Boyle, R., Thomas, R.: Computer Vision: A First Course, pp. 48–50. Blackwell Scientific Publications, Malden (1988)Google Scholar
  15. 15.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Serra, J.: Image analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, London (1988)Google Scholar
  17. 17.
    Li, L., Weinberg, C.R., Darden, T.A., Pedersen, L.G.: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142 (2001)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston, Massachusetts (1989)MATHGoogle Scholar
  19. 19.
    Ros, E., Rodríguez, M.M., Mota, S., Bernier, J.L., Rojas, I., Puntonet, C.G., Lang, E.W.: Skin Lesions Diagnosis Based on Fluorescence Image Processing: Simple Parameters Scanning. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 858–867. Springer, Heidelberg (2002)Google Scholar
  20. 20.
    Punch, W.F., Goodman, E.D., Pei, M., Chia-Shun, L., Hovland, P., Enbody, R.: Further Research on Feature Selection and Classification Using Genetic Algorithms. International Conference on Genetic Algorithms 93, 557–564 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Suhail M. Odeh
    • 1
  • Eduardo Ros
    • 1
  • Ignacio Rojas
    • 1
  • Jose M. Palomares
    • 2
  1. 1.Department of Computer Architecture and TechnologyUniversity of GranadaGranadaSpain
  2. 2.Department of Electrotechnics and ElectronicsUniversity of CordobaCordobaSpain

Personalised recommendations