Digitisation and 3D Reconstruction of 30 Year Old Microscopic Sections of Human Embryo, Foetus and Orbit

  • Joris E. van Zwieten
  • Charl P. Botha
  • Ben Willekens
  • Sander Schutte
  • Frits H. Post
  • Huib J. Simonsz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)


A collection of 2200 microscopic sections was recently recovered at the Netherlands Ophthalmic Research Institute and the Department of Anatomy and Embryology of the Academic Medical Centre in Amsterdam. The sections were created thirty years ago and constitute the largest and most detailed study of human orbital anatomy to date. In order to preserve the collection, it was digitised. This paper documents a practical approach to the automatic reconstruction of a 3-D representation of the original objects from the digitised sections. To illustrate the results of our approach, we show a multi-planar reconstruction and a 3-D direct volume rendering of a reconstructed foetal head.


Mutual Information Normalise Correlation Adjacent Section Registration Phase Microscopic Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ham, A., Leeson, T.: Histology, 5th edn. Pitman medical publishing (1965)Google Scholar
  2. 2.
    Huijsmans, D., Lamers, W., Los, J., Strackee, J.: Toward computerized morphometric facilities: a review of 58 software packages for computer-aided three-dimensional reconstruction, quantification, and picture generation from parallel serial sections. The Anatomical Record 216, 449–470 (1986)CrossRefGoogle Scholar
  3. 3.
    van den Elsen, P., Pol, E.J., Viergever, M.: Medical image matching - a review with classification. IEEE Engineering in Medicine and Biology, 26–39 (1993)Google Scholar
  4. 4.
    Maintz, J., Viergever, M.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  5. 5.
    Laan, A., Lamers, W., Huijsmans, D., te Kortschot, A., Smith, J., Strackee, J., Los, J.: Deformation-corrected computer-aided three-dimensional reconstruction of immunohistochemically stained organs: application to the rat heart during early organogenesis. The Anatomical Record 224, 443–457 (1989)CrossRefGoogle Scholar
  6. 6.
    Verbeek, F.: Three-dimensional reconstruction of biological objects from serial sections including deformation correction. PhD thesis, Delft Technical University (1995)Google Scholar
  7. 7.
    Kim, B., Boes, J., Frey, K., Meyer, C.: Mutual information for automated unwarping of rat brain autoradiographs. Neuroimage 5, 31–40 (1997)CrossRefGoogle Scholar
  8. 8.
    Rydmark, M., Jansson, T., Berthold, C.H., Gustavsson, T.: Computer-assisted realignment of light micrograph images from consecutive section series of cat celebral cortex. Journal of Microscopy 165, 29–47 (1992)Google Scholar
  9. 9.
    Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3d structure from serial histological sections. Image and vision computing 19, 25–31 (2000)CrossRefGoogle Scholar
  10. 10.
    Pitiot, A., Malandain, G., Bardinet, E., Thompson, P.M.: Piecewise affine registration of biological images. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 91–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Guest, E., Baldock, R.: Automatic reconstruction of serial sections using the finite element method. Bioimaging 3 (1995)Google Scholar
  12. 12.
    Krinidis, S., Nikou, C., Pitas, I.: A global energy function for the alignment of serially acquired slices. IEEE Transactions on Information Technology in Biomedicine 7(2), 108–113 (2003)CrossRefGoogle Scholar
  13. 13.
    Galigher, A., Korloff, E.: Essentials of practical microtechnique. Lea and Febiger (1964)Google Scholar
  14. 14.
    Poynton, C.: Color faq – frequently asked questions about color (2002)Google Scholar
  15. 15.
    Young, I., Gerbrands, J., van Vliet, L.: Fundamentals of Image Processing. Delft University of Technology (1998)Google Scholar
  16. 16.
    Mardia, K.: Statistics of directional data. Probability and Mathemetical Statistics. Academic Press, London (1972)MATHGoogle Scholar
  17. 17.
    Koornneef, L.: Spatial aspects of orbital musculo-fibrous tissue in man. PhD thesis, Amsterdam University (1976)Google Scholar
  18. 18.
    de Haan, A.: De prenatale ontwikkeling van de humane orbita. PhD thesis (Unpublished, 1983-1986)Google Scholar
  19. 19.
    Roche, A., Malandain, G., Ayache, N.: Unifying maximum likelihood approaches in medical image registration. International Journal of Imaging Systems and Technology: Special Issue on 3D Imaging 11, 71–80 (2000)Google Scholar
  20. 20.
    Ibáñez, L., Schroeder, W., Ng, L., Cates, J.: The itk software guide, 2nd edn. (2005)Google Scholar
  21. 21.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in C, the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joris E. van Zwieten
    • 1
  • Charl P. Botha
    • 1
  • Ben Willekens
    • 2
  • Sander Schutte
    • 3
  • Frits H. Post
    • 1
  • Huib J. Simonsz
    • 4
  1. 1.Data Visualisation GroupDelft University of Technology 
  2. 2.The Netherlands Ophthalmic Research InstituteAmsterdam
  3. 3.Biomechanical EngineeringDelft University of Technology 
  4. 4.Ophthalmology DepartmentErasmus Medical CentreRotterdam

Personalised recommendations