Lung Parenchyma Segmentation from CT Images Based on Material Decomposition

  • Carlos Vinhais
  • Aurélio Campilho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)


We present a fully automated method for extracting the lung region from volumetric X-ray CT images based on material decomposition. By modeling the human thorax as a composition of different materials, the proposed method follows a threshold-based, hierarchical voxel classification strategy. The segmentation procedure involves the automatic computation of threshold values and consists on three main steps: patient segmentation and decomposition, large airways extraction and lung parenchyma decomposition, and lung region of interest segmentation. Experimental results were performed on thoracic CT images acquired from 30 patients. The method provides a reproducible set of thresholds for accurate extraction of the lung parenchyma, needed for computer aided diagnosis systems.


Compute Tomography Image Lung Parenchyma Lung Region Compute Tomography Number Large Airway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armato, S.G., Giger, M.L., Moran, C.J., Doi, K., MacMahon, H.: Computerized Detection of Lung Nodules in Computed Tomography Scans. In: Proceedings of the 1st International Workshop on Computer-Aided Diagnosis, pp. 119–124 (1998)Google Scholar
  2. 2.
    Armato III, S.G., Giger, M.L., Morgan, C.J., Blackburn, J.T., Doi, K., MacMahon, H.: Computorized Detection of Pulmonary Nodules on CT Scans. RadioGraphics 19(5), 1303–1311 (1999)Google Scholar
  3. 3.
    Brown, M.S., McNitt-Gray, M.F., Goldin, J.G., Suh, R.D., Sayre, J.W., Aberle, D.R.: Patient-Specific Models for Lung Nodule Detection and Surveillance in CT Images. IEEE Trans. on Medical Imaging 20(12), 1242–1250 (2001)CrossRefGoogle Scholar
  4. 4.
    Gurcan, M.N., Sahiner, B., Petrick, N., Chan, H.-P., Kazerooni, E.A., Cascade, P.N., Hadjiiski, L.: Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system. Medical Physics 29(11), 2552–2558 (2002)CrossRefGoogle Scholar
  5. 5.
    Armato III, S.G., Sensakovic, W.F.: Automated Lung Segmentation for Thoracic CT: Impact on Computer-Aided Diagnosis. Academic Radiology 11, 1011–1021 (2004)CrossRefGoogle Scholar
  6. 6.
    Kemerink, G.J., Lamers, R.J.S., Pellis, B.J., Kruize, H.H., van Engelshoven, J.M.A.: On segmentation of lung parenchyma in quantitative computed tomography of the lung. Medical Physics 25(12), 2432–2439 (1998)CrossRefGoogle Scholar
  7. 7.
    Brown, M.S., McNitt-Gray, M.F., Goldin, J.G., Greaser, L.E., Aberle, D.R.:Knowledge-Based Method for Segmentation and Quantitative Analysis of Lung Function from CT. In: Proceedings of the 1st International Workshop on Computer-Aided Diagnosis, pp. 113–118 (1998)Google Scholar
  8. 8.
    Leader, J.K., Zheng, B., Rogers, R.M., Sciurba, F.C., Perez, A., Chapman, B.E., Patel, S., Fuhrman, C.R., Gur, D.: Automated Lung Segmentation in X-ray Computed Tomography: Development and Evaluation of a Heuristic Threshold-Based Scheme. Academic Radiology 10, 1224–1236 (2003)CrossRefGoogle Scholar
  9. 9.
    Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images. IEEE Trans. on Medical Imaging 20(6), 490–498 (2001)CrossRefGoogle Scholar
  10. 10.
    Alvarez, R.E., Macovsky, A.: Energy-selective Reconstruction in X-ray Computorized Tomography. Phys. Med. Biol. 21, 733–744 (1976)CrossRefGoogle Scholar
  11. 11.
    Lehmann, L.A., Alvarez, R.E., Macovski, A., Brody, W.R.: Generalized Image Combinations in Dual KVP Digital Radiography. Medical Physics 8(5), 659–667 (1981)CrossRefGoogle Scholar
  12. 12.
    Macovsky, A.: Medical Imaging Systems. Information and Systems Science Series. Prentice Hall Inc., Englewood Cliffs (1983)Google Scholar
  13. 13.
    ICRU, Tissue substitutes in radiation dosimetry and measurement, Report 44 of the International Commission on Radiation Units and Measurements, Bethesda, MD (1989)Google Scholar
  14. 14.
    Berger, M.J., Hubbell, J.H.: XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597 (1987)Google Scholar
  15. 15.
    Boone, J.M., Seibert, J.A.: An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV. Medical Physics 24(11), 1661–1670 (1997)CrossRefGoogle Scholar
  16. 16.
    Rijsbergen, C.J.V.: Information Retrieval, 2nd edn., Butterworths, London (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlos Vinhais
    • 1
    • 2
  • Aurélio Campilho
    • 1
    • 3
  1. 1.INEB – Instituto de Engenharia Biomédica, Laboratório de Sinal e Imagem BiomédicaPortoPortugal
  2. 2.ISEP – Instituto Superior de Engenharia do PortoDepartamento de FísicaPortoPortugal
  3. 3.Faculdade de Engenharia, Departamento de Engenharia Electrotécnica e ComputadoresUniversidade do PortoPortoPortugal

Personalised recommendations