A Multiclassifier Approach for Lung Nodule Classification

  • Carlos S. Pereira
  • Luís A. Alexandre
  • Ana Maria Mendonça
  • Aurélio Campilho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)


The aim of this paper is to examine a multiclassifier approach to the classification of the lung nodules in X-ray chest radiographs. The approach investigated here is based on an image region-based classification whose output is the information of the presence or absence of a nodule in an image region. The classification was made, essentially, in two steps: firstly, a set of rotation invariant features was extracted from the responses of a multi-scale and multi-orientation filter bank; secondly, different classifiers (multi-layer perceptrons) are designed using different features sets and trained in different data. These classifiers are further combined in order to improve the classification performance. The obtained results are promising and can be used for reducing the false-positives nodules detected in a computer-aided diagnosis system.


Hide Layer Pulmonary Nodule Image Region Lung Nodule Nodule Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J., Thun, M.J.: Cancer Statistics. Cancer J.Clin. 55, 10–30 (2005)CrossRefGoogle Scholar
  2. 2.
    Keserci, B., Yoshida, H.: Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model. Medical Image Analysis 6, 431–447 (2002)CrossRefGoogle Scholar
  3. 3.
    van Ginneken, B., Romeny, B.M.H., Viergever, M.A.: Computer-aided diagnosis in chest radiography: A survey. IEEE Transactions on Medical Imaging 20(12), 1228–1241 (2001)CrossRefGoogle Scholar
  4. 4.
    Wei, J., Hagihara, Y., Shimizu, A., Kobatake, H.: Optimal image feature set for detecting lung nodules on chest X-ray images. In: CARS 2002 (2002)Google Scholar
  5. 5.
    van Ginneken, B., Katsuragawa, S., ter Haar Romeny, B.M., Kunio, D., Viergever, M.A.: Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Transactions on Medical Imaging 21, 139–149 (2002)CrossRefGoogle Scholar
  6. 6.
    Schilham, A.M.R., van Ginneken, B., Loog, M.: Multi-scale Nodule Detection in Chest Radiographs. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 602–609. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K.-i., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Development of a Digital Image Database for Chest Radiographs With and Without a Lung Nodule: Receiver Operating Characteristic Analysis of Radiologists Detection of Pulmonary Nodules. American Journal of Roentgenology 174, 71–74 (2000)Google Scholar
  8. 8.
    Yoshida, H.: Local contralateral subtraction based on bilateral symmetry of lung for reduction of false positives in computerized detection of pulmonary nodules. IEEE Transactions on Biomedical Engineering 51, 778–789 (2004)CrossRefGoogle Scholar
  9. 9.
    Suzuki, K., Shiraishi, J., Abe, H., MacMahon, H., Doi, K.: False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Academic Radiology 12, 191–201 (2005)CrossRefGoogle Scholar
  10. 10.
    Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4) (1999)Google Scholar
  11. 11.
    Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on Gabor filters. IEEE Transactions on Image Processing 11(10), 195–203 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kumar, A., Pang, G.K.H.: Defect detection in textured materials using Gabor filters. IEEE Transactions on Industry Applications 38(2) (2002)Google Scholar
  13. 13.
    Varma, M., Zisserman, A.: Unifying statistical texture classification frameworks. Image and Vision Computing 22, 1175–1183 (2004)Google Scholar
  14. 14.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision 43, 29–44 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Alexandre, L.A., Campilho, A.C., Kamel, M.: On combining classifiers using sum and product rules. Pattern Recognition Letters 22, 1283–1289 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlos S. Pereira
    • 1
    • 2
  • Luís A. Alexandre
    • 1
    • 3
  • Ana Maria Mendonça
    • 1
    • 4
  • Aurélio Campilho
    • 1
    • 4
  1. 1.Instituto de Engenharia BiomédicaPortoPortugal
  2. 2.Escola Superior de Tecnologia e Gestão de LamegoInstituto Politécnico de ViseuLamegoPortugal
  3. 3.IT – Networks and Multimedia GroupCovilhãPortugal
  4. 4.Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations